cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006146 Sums of prime divisors of Ruth-Aaron numbers (A006145).

Original entry on oeis.org

5, 5, 7, 18, 15, 20, 44, 46, 29, 31, 50, 30, 20, 34, 75, 162, 146, 46, 14, 113, 53, 66, 333, 36, 514, 318, 43, 193, 279, 418, 30, 121, 55, 485, 200, 136, 77, 37, 211, 587, 147, 269, 477, 108, 136, 235, 185, 290, 333, 309, 493, 177, 199, 223, 641, 531, 182, 368
Offset: 1

Views

Author

Keywords

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
  • Dana Mackenzie, Homage to an itinerant master, Science, vol. 275, p. 759, 1997.
  • Carol Nelson, David E. Penney, and Carl Pomerance, 714 and 715. Journal of Recreational Mathematics 7(2):87-89, 1974.

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 10000 do t0 := 0; t1 := factorset(n);
    for j from 1 to nops(t1) do t0 := t0+t1[ j ]; od: s[ n ] := t0; od:
    for n from 1 to 9999 do if s[ n ] = s[ n+1 ] then lprint(n,s[ n ]); fi; od:
  • Mathematica
    Cases[Partition[(Plus@@(First@#&/@FactorInteger@#)&/@Range@100000),2,1],{a_,a_}:>a] (* Hans Rudolf Widmer, May 31 2024 *)
  • Python
    from sympy import primefactors
    def aupton(terms):
      alst, k, sopfk, sopfkp1 = [], 0, 0, 1
      while len(alst) < terms:
        k, sopfk, sopfkp1 = k+1, sopfkp1, sum(p for p in primefactors(k+1))
        if sopfkp1 == sopfk: alst.append(sopfk)
      return alst
    print(aupton(58)) # Michael S. Branicky, May 05 2021

Formula

a(n) = A008472(A006145(n)) = A008472(A006145(n) + 1). - Amiram Eldar, Nov 24 2019