This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006152 M1939 #54 Sep 19 2024 18:07:55 %S A006152 1,2,9,52,365,3006,28357,301064,3549177,45965530,648352001,9888877692, %T A006152 162112109029,2841669616982,53025262866045,1049180850990736, %U A006152 21937381717388657,483239096122434354,11184035897992673017,271287473871771163460,6881656485607798743261 %N A006152 Exponential generating function x*exp(x/(1-x)). %C A006152 a(n) is the number of labeled rooted trees with every non-root vertex of degree 1 or 2. - _Geoffrey Critzer_, May 21 2012. %C A006152 Total number of unit length lists in all sets of lists, cf. A000262. - _Alois P. Heinz_, May 10 2016 %D A006152 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006152 Vincenzo Librandi, <a href="/A006152/b006152.txt">Table of n, a(n) for n = 1..200</a> %H A006152 S. Getu and L. W. Shapiro, <a href="/A006152/a006152.pdf">Combinatorial view of the composition of functions</a>, Ars Combin. 10 (1980), 131-145. (Annotated scanned copy) %H A006152 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=156">Encyclopedia of Combinatorial Structures 156</a> %F A006152 a(n) = n*A000262(n-1). %F A006152 D-finite with recurrence a(n) = 2*(n-1)*a(n-1)-(n^2-5*n+5)*a(n-2)-(n-4)*(n-2)*a(n-3). - _Vaclav Kotesovec_, Oct 05 2012 %F A006152 a(n) ~ n^(n-1/4)*exp^(2*sqrt(n)-n-1/2)/sqrt(2). - _Vaclav Kotesovec_, Oct 05 2012 %F A006152 a(n) = A320264(n+1,n). - _Alois P. Heinz_, Oct 08 2018 %t A006152 nn = 17; a = x/(1 - x); %t A006152 Range[0, nn]! CoefficientList[Series[x Exp[a], {x, 0, nn}], x] (* _Geoffrey Critzer_, May 21 2012 *) %o A006152 (PARI) a(n)=n!*polcoeff(x*exp(x/(1-x)+O(x^n)), n) %Y A006152 Cf. A000262, A320264. %K A006152 nonn,easy %O A006152 1,2 %A A006152 _Simon Plouffe_ %E A006152 More terms from _Michael Somos_, Jun 07 2000