This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006217 M3869 #27 Jul 08 2025 16:43:43 %S A006217 5,16,56,224,1024,5296,30656,196544,1383424,10608976,88057856, %T A006217 786632864,7525556224,76768604656,831846342656,9541952653184, %U A006217 115516079079424,1471865234248336,19689636672045056,275914012819601504 %N A006217 Number of down-up permutations of n+5 starting with 5. %C A006217 Entringer numbers. %D A006217 R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246. %D A006217 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006217 B. Bauslaugh and F. Ruskey, <a href="https://doi.org/10.1007/BF01932127">Generating alternating permutations lexicographically</a>, Nordisk Tidskr. Informationsbehandling (BIT) 30 (1990), 16-26. %H A006217 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A006217 C. Poupard, <a href="https://doi.org/10.1016/0012-365X(82)90293-X">De nouvelles significations énumeratives des nombres d'Entringer</a>, Discrete Math., 38 (1982), 265-271. %F A006217 a(0) = 5 and a(n) = 4*E(n+3) - 4*E(n+1) for n >= 1, where E(j) = A000111(j) = j!*[x^j](sec(x) + tan(x)) are the up/down or Euler numbers. - _Emeric Deutsch_, May 15 2004 %e A006217 a(0)=5 because we have 51324, 51423, 52314, 52413 and 53412. %p A006217 f:=sec(x)+tan(x): fser:=series(f,x=0,35): E[0]:=1: for n from 1 to 40 do E[n]:=n!*coeff(fser,x^n) od: 5, seq(4*E[n-1]-4*E[n-3],n=5..23); %o A006217 (PARI) {a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+5, t=0; v = vector(k, i, if( i>1, t += v[k+1-i]))); v[5])}; /* _Michael Somos_, Feb 03 2004 */ %Y A006217 Column k=4 in A008282. %Y A006217 Cf. A000111. %K A006217 nonn,easy %O A006217 0,1 %A A006217 _N. J. A. Sloane_ %E A006217 More terms from _Emeric Deutsch_, May 15 2004