This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006233 M1558 #87 Feb 16 2025 08:32:29 %S A006233 1,2,6,4,30,4,84,24,90,20,132,8,5460,840,360,48,1530,4,1596,168,1980, %T A006233 1320,8280,80,81900,6552,1512,112,3480,80,114576,7392,117810,7140, %U A006233 1260,8,3838380,5928,936,48,81180,440,1191960,55440,869400,38640,236880,224 %N A006233 Denominators of Cauchy numbers of first type. %C A006233 The corresponding numerators are given in A006232. %C A006233 The signed rationals A006232(n)/a(n) provide the a-sequence for the Stirling2 Sheffer matrix A048993. See the W. Lang link concerning Sheffer a- and z-sequences. %C A006233 Cauchy numbers of the first type are also called Bernoulli numbers of the second kind. %D A006233 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294. %D A006233 H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259. %D A006233 L. Jolley, Summation of Series, Chapman and Hall, London, 1925, pp. 14-15 (formula 70). %D A006233 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006233 T. D. Noe, <a href="/A006233/b006233.txt">Table of n, a(n) for n = 0..1000</a> %H A006233 A. Adelberg, <a href="http://dx.doi.org/10.1006/jnth.1998.2278">2-adic congruences of Norland numbers and of Bernoulli numbers of the second kind</a>, J. Number Theory, 73 (1998), 47-58. %H A006233 I. S. Gradsteyna and I. M. Ryzhik, <a href="http://mathtable.com/gr/index.html">Table of integrals, series and products</a>, (1980), page 2 (formula 0.131). %H A006233 Wolfdieter Lang, <a href="/A006233/a006233.txt">Sheffer a- and z-sequences</a> %H A006233 Rui-Li Liu and Feng-Zhen Zhao, <a href="https://hosted.math.rochester.edu/ojac/vol14/183.pdf">Log-concavity of two sequences related to Cauchy numbers of two kinds</a>, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09. %H A006233 Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, <a href="http://dx.doi.org/10.1016/j.disc.2006.03.065">The Cauchy numbers</a>, Discrete Math. 306 (2006), no. 16, 1906-1920. %H A006233 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernoulliNumberoftheSecondKind.html">Bernoulli Number of the Second Kind</a> %H A006233 Ming Wu and Hao Pan, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/45-2/quartpan02_2007.pdf">Sums of products of Bernoulli numbers of the second kind</a>, Fib. Quart., 45 (2007), 146-150. %H A006233 Feng-Zhen Zhao, <a href="http://dx.doi.org/10.1016/j.disc.2008.10.013">Sums of products of Cauchy numbers</a>, Discrete Math., 309 (2009), 3830-3842. %F A006233 Denominator of integral of x(x-1)...(x-n+1) from 0 to 1. %F A006233 E.g.f.: x/log(1+x). %F A006233 Denominator of Sum_{k=0..n} A048994(n,k)/(k+1). [_Peter Luschny_, Apr 28 2009] %F A006233 a(n) = denominator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - _Daniel Suteu_, Feb 23 2018 %F A006233 Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2*n) - Sum_{k >= 2} abs((A006232(k)/a(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - _A.H.M. Smeets_, Nov 14 2018 %e A006233 1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90,... %p A006233 seq(denom(add(stirling1(n,k)/(k+1),k=0..n)),n=0..12); # _Peter Luschny_, Apr 28 2009 %t A006233 With[{nn=50},Denominator[CoefficientList[Series[x/Log[1+x],{x,0,nn}],x] Range[0,nn]!]] (* _Harvey P. Dale_, Oct 28 2011 *) %t A006233 a[n_] := Sum[ StirlingS1[n, k]/(k+1), {k, 0, n}] // Denominator; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jan 10 2013, after _Peter Luschny_ *) %t A006233 Join[{1}, Array[Abs@Denominator[ Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 50]] (* _Michael De Vlieger_, Nov 13 2018 *) %o A006233 (PARI) for(n=0,50, print1(denominator( sum(k=0,n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ _G. C. Greubel_, Nov 13 2018 %o A006233 (Magma) [Denominator((&+[StirlingFirst(n,k)/(k+1): k in [0..n]])): n in [0..50]]; // _G. C. Greubel_, Nov 13 2018 %o A006233 (Sage) %o A006233 def A006233_list(len): %o A006233 f, R, C = 1, [1], [1]+[0]*(len-1) %o A006233 for n in (1..len-1): %o A006233 for k in range(n, 0, -1): %o A006233 C[k] = -C[k-1] * k / (k + 1) %o A006233 C[0] = -sum(C[k] for k in (1..n)) %o A006233 R.append((C[0]*f).denominator()) %o A006233 f *= n+1 %o A006233 return R %o A006233 print(A006233_list(50)) # _G. C. Greubel_, Nov 13 2018 %o A006233 (Python) # Results are abs values %o A006233 from fractions import gcd %o A006233 aa, n, sden = [0, 1], 1, 1 %o A006233 print(0, 1) %o A006233 while n < 20: %o A006233 j, snom, sden, a = 1, 0, (n+1)*sden, 0 %o A006233 while j < len(aa): %o A006233 snom, j = snom+aa[j]*(sden//(j+1)), j+1 %o A006233 nom, den = snom, sden %o A006233 print(n,den//gcd(nom,den)) %o A006233 aa, j = aa+[-aa[j-1]], j-1 %o A006233 while j > 0: %o A006233 aa[j], j = n*aa[j]-aa[j-1], j-1 %o A006233 n += 1 # _A.H.M. Smeets_, Nov 14 2018 %o A006233 (Python) %o A006233 from fractions import Fraction %o A006233 from sympy.functions.combinatorial.numbers import stirling %o A006233 def A006233(n): return sum(Fraction(stirling(n,k,kind=1,signed=True),k+1) for k in range(n+1)).denominator # _Chai Wah Wu_, Jul 09 2023 %Y A006233 Cf. A006232 (numerators), A002206, A002207, A002208, A002209, A002657, A002790. %K A006233 nonn,frac,nice,easy %O A006233 0,2 %A A006233 _N. J. A. Sloane_