This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006237 M3725 #47 Feb 16 2025 08:32:29 %S A006237 1,1,4,384,42467328,20776019874734407680, %T A006237 1657509127047778993870601546036901052416000000, %U A006237 153850844349814660487100539994381178281567942393055761257560677644718869248475136000000000000000000000 %N A006237 Complexity of tensor sum of n graphs; or spanning trees on n-cube. %D A006237 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A006237 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.6.10. %H A006237 Alois P. Heinz, <a href="/A006237/b006237.txt">Table of n, a(n) for n = 0..10</a> %H A006237 Aaron R. Bagheri, <a href="http://scholarship.claremont.edu/hmc_theses/102">Classifying the Jacobian Groups of Adinkras</a>, (2017), HMC Senior Theses. %H A006237 Frank Harary, John P. Hayes, and Horng-Jyh Wu, <a href="http://dx.doi.org/10.1016/0898-1221(88)90213-1">A survey of the theory of hypercube graphs</a>, Comput. Math. Appl., 15(4) (1988), 277-289. %H A006237 D. E. Knuth, <a href="/A006235/a006235.pdf">Letter to N. J. A. Sloane, Oct. 1994</a> %H A006237 Germain Kreweras, <a href="http://dx.doi.org/10.1016/0095-8956(78)90021-7">Complexité et circuits Eulériens dans les sommes tensorielles de graphes</a>, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4. %H A006237 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a> %H A006237 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a> %H A006237 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A006237 a(n) = 2^(2^n-1-n)*1^binomial(n, 1)*2^binomial(n, 2)*...*n^binomial(n, n). %t A006237 Table[2^(2^n - 1 - n) Product[k^Binomial[n, k], {k, n}], {n, 0, 10}] %o A006237 (PARI) a(n)=2^(2^n-n-1)*prod(k=1,n,k^binomial(n,k)) %Y A006237 Cf. A006235. %K A006237 nonn,easy,nice %O A006237 0,3 %A A006237 _N. J. A. Sloane_, _Don Knuth_ %E A006237 Description expanded July 1995