cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006244 Hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).

This page as a plain text file.
%I A006244 M5363 #62 Feb 16 2025 08:32:29
%S A006244 1,91,8911,873181,85562821,8384283271,821574197731,80505887094361,
%T A006244 7888755361049641,773017519495770451,75747828155224454551,
%U A006244 7422514141692500775541,727330638057709851548461,71270980015513872950973631,6983828710882301839343867371,684343942686450066382748028721
%N A006244 Hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).
%C A006244 Equivalently, triangular hex numbers.
%D A006244 M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
%D A006244 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006244 Jon E. Schoenfield, <a href="/A006244/b006244.txt">Table of n, a(n) for n = 1..500</a>
%H A006244 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A006244 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A006244 S. C. Schlicker, <a href="http://www.jstor.org/stable/10.4169/math.mag.84.5.339">Numbers Simultaneously Polygonal and Centered Polygonal</a>, Mathematics Magazine,  Vol. 84, No. 5, December 2011, pp. 339-350.
%H A006244 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HexNumber.html">Hex Number</a>
%H A006244 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1).
%F A006244 From _Richard Choulet_, Sep 19 2007: (Start)
%F A006244 We must solve 2*r^2-r=3*p^2-3*p+1, which gives X^2=6*Y^2+3 with X=4*r-1 and Y=2*p-1. We obtain at the same time the following sequences:
%F A006244 X is given by 3, 27, 267, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2-18)^0.5
%F A006244 Y is given by 1, 11, 109, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2+3)^0.5
%F A006244 p is given by 1, 6, 55, 540, ... sequence for which a(n+2)=10*a(n+1)-a(n)-4 and a(n+1)=5*a(n)-2+(24*a(n)^2-24*a(n)+9)^0.5
%F A006244 r is given by 1, 7, 67, 661, ... sequence for which a(n+2)=10*a(n+1)-a(n)-2 and a(n+1)=5*a(n)-1+(24*a(n)^2-12*a(n)-3)^0.5
%F A006244 a(n+2) = 98*a(n+1)-a(n)-6, a(n+1)=49*a(n)-3+5*(96*a(n)^2-12*a(n)-3)^0.5.
%F A006244 G.f.: z*(1-8*z+z^2)/((1-z)*(1-98*z+z^2)). (End)
%F A006244 Define x(n) + y(n)*sqrt(24) = (6+sqrt(24))*(5+sqrt(24))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+6*(s(n)^2-s(n))). - _Steven Schlicker_, Apr 24 2007
%F A006244 a(n) = (A007667(n+1)-1)/4. - _Ralf Stephan_, Mar 03 2004
%F A006244 a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - _Colin Barker_, Jan 08 2015
%e A006244 a(1)=91 because 91 is the sixth centered hexagonal number and the seventh hexagonal number.
%p A006244 CP := n -> 1+1/2*6*(n^2-n): N:=10: u:=5: v:=1: x:=6: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+24*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # _Steven Schlicker_, Apr 24 2007
%p A006244 A006244:=-(1-8*z+z**2)/(z-1)/(z**2-98*z+1); # Conjectured (correctly) by _Simon Plouffe_ in his 1992 dissertation.
%p A006244 a := n -> (Matrix([[91,1,1]]). Matrix([[99,1,0],[ -99,0,1],[1,0,0]])^n)[1,3]; seq (a(n), n=1..20); # _Alois P. Heinz_, Aug 14 2008
%t A006244 CoefficientList[Series[(1 - 8*x + x^2)/(1 - 99*x + 99*x^2 - x^3), {x, 0, 20}], x] (* _Jean-François Alcover_, Feb 26 2015 *)
%o A006244 (PARI) Vec(-x*(x^2-8*x+1)/((x-1)*(x^2-98*x+1)) + O(x^100)) \\ _Colin Barker_, Jan 08 2015
%Y A006244 Cf. A001570, A001921, A000384, A003215, A253175.
%K A006244 nonn,easy
%O A006244 1,2
%A A006244 _N. J. A. Sloane_, _Jeffrey Shallit_
%E A006244 Edited by _N. J. A. Sloane_, Sep 25 2007
%E A006244 More terms from _Alois P. Heinz_, Aug 14 2008
%E A006244 More terms from _Jon E. Schoenfield_, Dec 26 2008