This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006271 M1555 #32 Jul 08 2025 16:45:10 %S A006271 2,5,197,7761797,467613464999866416197, %T A006271 102249460387306384473056172738577521087843948916391508591105797 %N A006271 Numerators of a continued fraction for 1 + sqrt(2). %C A006271 With b(n) = floor((1+sqrt(2))^n) (cf. A080039) the terms appear to be b(2*3^n). - _Joerg Arndt_, Apr 29 2013 %C A006271 Note that 1 + sqrt(2) = (c + sqrt(c^2+4))/2 and has regular continued fraction [c, c, ...] with c = 2. With b(n) = A006266(n), it can be expanded into an irregular continued fraction f(1) = b(1) and f(n) = (b[n-1]^2+1)/(b[n]-b[n-1]), and numerator(f(n)) = a(n) (cf. Shallit). - _Michel Marcus_, Apr 29 2013 %D A006271 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006271 F. L. Bauer, <a href="http://www.ega-math.narod.ru/Nquant/Bauer.htm">Letters to the editor: An Infinite Product for Square-Rooting with Cubic Convergence</a>, The Mathematical Intelligencer, Vol. 20, Issue 1, (1998), 12-14. %H A006271 N. J. Fine, <a href="http://www.jstor.org/stable/2321014">Infinite products for k-th roots</a>, Amer. Math. Monthly Vol. 84, No. 8 (Oct. 1977), pp. 629-630. %H A006271 Jeffrey Shallit, <a href="http://archive.org/details/jresv80Bn2p285">Predictable regular continued cotangent expansions</a>, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290. %F A006271 From _Peter Bala_, Jan 18 2022: (Start) %F A006271 a(n) = (3 + 2*sqrt(2))^3^(n-1) + (3 - 2*sqrt(2))^3^(n-1) - 1 for n >= 1. %F A006271 a(n) = A006266(n)^2 + 1 for n >= 1. %F A006271 a(1) = 5 and a(n) = a(n-1)^3 + 3*a(n-1)^2 - 3 for n >= 2. %F A006271 a(1) = 5 and a(n) = 8*(Product_{k = 1..n-1} a(k))^2 - 3 for n >= 2. %F A006271 2 - Product_{n = 1..N} (1 + 2/a(n))^2 = 8/(a(N+1) + 3). Therefore %F A006271 sqrt(2) = (1 + 2/5) * (1 + 2/197) * (1 + 2/7761797) * (1 + 2/ 467613464999866416197) * ... - see Bauer. %F A006271 The convergence is cubic - see Fine. The first six factors of the product give sqrt(2) correct to more than 500 decimal places. (End) %p A006271 a := proc (n) option remember; if n = 1 then 5 else a(n-1)^3 + 3*a(n-1)^2 - 3 end if; end proc: %p A006271 seq(a(n), n = 1 .. 5); # _Peter Bala_, Jan 19 2022 %Y A006271 For denominators see A006272. Cf. A002814, A006266, A006273, A006275, A006276. %K A006271 nonn,easy %O A006271 0,1 %A A006271 _N. J. A. Sloane_ %E A006271 Previous values for a(3) and a(4) were 776 and 1797. They have been merged into 7761797 to reflect the 2nd continued fraction on page 6 of Shallit paper by _Michel Marcus_, Apr 29 2013