This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006279 M0914 #45 Jul 08 2025 16:45:34 %S A006279 1,1,2,3,14,129,25298,420984147,269425140741515486, %T A006279 47749585090209528873482531562977121, %U A006279 3466137915373323052799848584927709551269254572949111609037058632767202 %N A006279 Denominators of convergents to Cahen's constant: a(n+2) = a(n)^2*a(n+1) + a(n). %C A006279 Shifted square roots of partial quotients in continued fraction expansion of Cahen's constant: a(n) = sqrt(A006280(n+2)). - _Jonathan Sondow_, Aug 20 2014 %D A006279 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006279 Amiram Eldar, <a href="/A006279/b006279.txt">Table of n, a(n) for n = 0..13</a> %H A006279 J. L. Davison and Jeffrey O. Shallit, <a href="https://doi.org/10.1007/BF01332350">Continued Fractions for Some Alternating Series</a>, Monatshefte für Mathematik, Vol. 111 (1991), pp. 119-126; <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN362162050_0111&DMDID=DMDLOG_0013&LOGID=LOG_0013&PHYSID=PHYS_0126">alternative link</a>. %p A006279 A006279 := proc(n) option remember; if n <= 1 then 1 else A006279(n-2)^2*A006279(n-1)+A006279(n-2) fi end: %p A006279 seq(A006279(n), n=0..10); %t A006279 a[n_] := a[n] = If[n < 2, 1, a[n-2]^2*a[n-1] + a[n-2]]; %t A006279 Table[a[n], {n, 0, 9}] (* _Jean-François Alcover_, Sep 23 2022 *) %o A006279 (Python) %o A006279 from itertools import islice %o A006279 def A006279_gen(): # generator of terms %o A006279 a, b = 1, 1 %o A006279 yield a %o A006279 while True: %o A006279 yield b %o A006279 a, b = b, a*(a*b+1) %o A006279 A006279_list = list(islice(A006279_gen(),10)) # _Chai Wah Wu_, Mar 19 2024 %Y A006279 Cf. A118227, A006280, A006281. %K A006279 nonn,easy,frac %O A006279 0,3 %A A006279 _N. J. A. Sloane_ %E A006279 Definition clarified by _Jonathan Sondow_, Aug 20 2014