cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006284 Pierce expansion for Euler's constant.

This page as a plain text file.
%I A006284 M1593 #32 Feb 16 2025 08:32:30
%S A006284 1,2,6,13,21,24,225,615,17450,23228,57774,221361,522377,793040,
%T A006284 1706305,8664354,19037086,51965160,56870701,124645388,784244500,
%U A006284 792809072,3675221276,42108268014,53633289500,56827261536,67080647365
%N A006284 Pierce expansion for Euler's constant.
%D A006284 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006284 G. C. Greubel, <a href="/A006284/b006284.txt">Table of n, a(n) for n = 0..1000</a>
%H A006284 Jeffrey Shallit, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/22-4/shallit1.pdf">Some predictable Pierce expansions</a>, Fib. Quart., 22 (1984), 332-335.
%H A006284 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>
%F A006284 If u(0) = exp(1/m), where m is an integer >=1, and u(n+1) = u(n)/frac(u(n)) then floor(u(n)) = m*n. Let u(0)=1/gamma and u(n+1) = u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n) = floor(u(n)) - _Benoit Cloitre_, Mar 09 2004
%t A006284 PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[EulerGamma, 7!], 25] (* _G. C. Greubel_, Nov 14 2016 *)
%o A006284 (PARI) r=1/Euler;for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))
%Y A006284 Cf. A006275, A006276, A006283.
%K A006284 nonn
%O A006284 0,2
%A A006284 _N. J. A. Sloane_, _Jeffrey Shallit_