This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006326 M3931 #28 Jun 01 2019 11:30:35 %S A006326 1,5,24,122,680,4155,27776,202084,1592064,13513825,123025408, %T A006326 1196165886,12374422528,135740585015,1573990072320,19239037403528, %U A006326 247255523459072,3333340694137725,47039231504678912,693488743931379010,10661950808321949696,170659875799127955955 %N A006326 Total preorders. %D A006326 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006326 G. Kreweras, <a href="http://www.numdam.org/item?id=MSH_1976__53__5_0">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30. %H A006326 G. Kreweras, <a href="/A019538/a019538.pdf">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy) %p A006326 # After _Alois P. Heinz_ in A000111: %p A006326 b := proc(u, o) option remember; %p A006326 `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end: %p A006326 a := n -> (n-2)*b(n-1, 1)/2: seq(a(n), n = 3..23); # _Peter Luschny_, Oct 27 2017 %t A006326 b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]]; %t A006326 a[n_] := (n-2) b[n-1, 1]/2; %t A006326 Array[a, 22, 3] (* _Jean-François Alcover_, Jun 01 2019, from Maple *) %Y A006326 Cf. A000111, A079502. %K A006326 nonn %O A006326 3,2 %A A006326 _N. J. A. Sloane_ %E A006326 More terms from _Sean A. Irvine_, Mar 12 2017