This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006332 M2148 #48 Aug 02 2024 22:38:23 %S A006332 0,2,28,168,660,2002,5096,11424,23256,43890,77924,131560,212940, %T A006332 332514,503440,742016,1068144,1505826,2083692,2835560,3801028,5026098, %U A006332 6563832,8475040,10829000,13704210,17189172,21383208,26397308,32355010,39393312,47663616,57332704 %N A006332 From the enumeration of corners. %D A006332 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006332 G. C. Greubel, <a href="/A006332/b006332.txt">Table of n, a(n) for n = 0..1000</a> %H A006332 Germain Kreweras, <a href="http://www.numdam.org/numdam-bin/item?id=BURO_1965__6__9_0">Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82. %H A006332 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A006332 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992. %H A006332 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A006332 a(n) = (n*(1 + n)^2*(2 + n)*(1 + 2*n)*(3 + 2*n))/90. %F A006332 a(n) = 2*A006858(n). %F A006332 a(n) = (-1)^(n+1)*A132339(3, n). %F A006332 G.f.: 2*(1+x)*(1 + 6*x + x^2)/(1-x)^7. %F A006332 From _G. C. Greubel_, Dec 14 2021: (Start) %F A006332 E.g.f.: (1/90)*x*(180 + 1080*x + 1350*x^2 + 555*x^3 + 84*x^4 + 4*x^5)*exp(x). %F A006332 a(n) = binomial(n+2, 3)*binomial(2*n+3, 3)/5. (End) %F A006332 From _Amiram Eldar_, Jul 10 2023: (Start) %F A006332 Sum_{n>=1} 1/a(n) = 15*Pi^2 - 295/2. %F A006332 Sum_{n>=1} (-1)^(n+1)/a(n) = -15*Pi^2/2 + 120*Pi - 605/2. (End) %p A006332 A006332:=-2*(1+z)*(z**2+6*z+1)/(z-1)**7; # conjectured by _Simon Plouffe_ in his 1992 dissertation %t A006332 Table[(n(1+n)^2(2+n)(1+2n)(3+2n))/90, {n, 0, 30}] (* or *) %t A006332 {0}~Join~CoefficientList[Series[2(x+1)(x^2 +6x +1)/(1-x)^7, {x, 0, 29}], x] (* _Michael De Vlieger_, Mar 26 2016 *) %o A006332 (PARI) my(x='x+O('x^99)); concat(0, Vec(2*(x+1)*(x^2+6*x+1)/(1-x)^7)) \\ _Altug Alkan_, Mar 26 2016 %o A006332 (Magma) [Binomial(n+2, 3)*Binomial(2*n+3, 3)/5: n in [0..30]]; // _G. C. Greubel_, Dec 14 2021 %o A006332 (Sage) [binomial(n+2, 3)*binomial(2*n+3, 3)/5 for n in (0..30)] # _G. C. Greubel_, Dec 14 2021 %Y A006332 Cf. A006858, A132339. %K A006332 nonn,easy %O A006332 0,2 %A A006332 _N. J. A. Sloane_