This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006340 M0100 #49 Aug 26 2018 04:45:57 %S A006340 2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2, %T A006340 2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2, %U A006340 2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1 %N A006340 An "eta-sequence": [ (n+1)*tau + 1/2 ] - [ n*tau + 1/2 ], tau = (1 + sqrt(5))/2. %C A006340 Equals its own "derivative", which is formed by counting the strings of 1's that lie between 2's. %C A006340 Conjecture: A006340 = continued fraction expansion of (2.729967741... = sup{f(n,1)}), where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in the lower Wythoff sequence (A000201), else f(n,x) = 1/x. The first 12 values of f(n,1) are given in Example at A245216. - _Clark Kimberling_, Jul 14 2014 %C A006340 From _Michel Dekking_, Mar 05 2018: (Start) %C A006340 The description of this sequence is not correct, since the derivative of a equals %C A006340 a' = 1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,... %C A006340 The claim by Hofstadter in formula (4) in the 1977 letter to Sloane is also not correct, since the second derivative of a is equal to %C A006340 a'' = 2,2,1,2,1,2,2,1,2,1,2,2,1,... %C A006340 so a is not equal to its own second derivative. %C A006340 Nevertheless, this sequence has a self-similarity property: if one replaces every chunk 212 with 1 and every chunk 21212 with 2, then one obtains back the original sequence. In other words, (a(n)) is the unique fixed point of the morphism sigma given by sigma: 1->212, 2->21212. %C A006340 This can be proved following the ideas of Chapter 2 in Lothaire's book and Section 4 of my paper "Substitution invariant Sturmian words and binary trees". %C A006340 To comply with these references change the alphabet to {0,1}. This changes sigma into the morphism 0->101, 1->10101. %C A006340 The fractional part {tau} of tau is larger than 1/2; as it is convenient to have it smaller than 1/2 we change to beta = 1-tau = (3-sqrt(5))/2. %C A006340 This changes the morphism 0->101, 1->10101 to its mirror image psi given by 0->01010, 1->010. %C A006340 Let psi_1 and psi_2 be the elementary Sturmian morphisms given by %C A006340 psi_1(0)=01 , psi_1(1)=1, psi_2(0)=10, psi_2(1)=0. %C A006340 Then psi = psi_2^2 psi_1. %C A006340 This already shows that psi generates a Sturmian sequence with certain parameters alpha and rho: s(alpha,rho) = ([(n+1)*alpha+rho]-[n*alpha+rho]). %C A006340 Since psi is the composition psi_2^2psi_1, the parameters of s(alpha,rho) are given by the composition T:=T_2^2T_1 of the fractional linear maps %C A006340 T_1(x,y) = ((1-x)/(2-x),(1-y)/(2-x)), %C A006340 T_2(x,y) = ((1-x)/(2-x), (2-x-y)/(2-x)). %C A006340 Since one can verify that T(beta,1/2)=(beta,1/2), it follows that %C A006340 alpha = beta, and rho = 1/2. %C A006340 (End) %D A006340 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006340 T. D. Noe, <a href="/A006340/b006340.txt">Table of n, a(n) for n = 0..1000</a> %H A006340 Michel Dekking, <a href="http://arxiv.org/abs/1705.08607">Substitution invariant Sturmian words and binary trees</a>, arXiv:1705.08607 [math.CO], (2017). %H A006340 Michel Dekking, <a href="http://math.colgate.edu/~integers/sjs7/sjs7.Abstract.html">Substitution invariant Sturmian words and binary trees</a>, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17. %H A006340 D. R. Hofstadter, <a href="/A006336/a006336_1.pdf">Eta-Lore</a> [Cached copy, with permission] %H A006340 D. R. Hofstadter, <a href="/A006336/a006336_2.pdf">Pi-Mu Sequences</a> [Cached copy, with permission] %H A006340 D. R. Hofstadter and N. J. A. Sloane, <a href="/A006336/a006336.pdf">Correspondence, 1977 and 1991</a> %H A006340 M. Lothaire, <a href="http://tomlr.free.fr/Math%E9matiques/Fichiers%20Claude/Auteurs/aaaDivers/Lothaire%20-%20Algebraic%20Combinatorics%20On%20Words.pdf">Algebraic combinatorics on words</a>, Cambridge University Press. Online publication date: April 2013; Print publication year: 2002. %t A006340 Differences[ Table[ Round[ GoldenRatio*n], {n, 0, 93}]] (* _Jean-François Alcover_, Aug 13 2012 *) %o A006340 (PARI) rt(n) = my(tau=(1 + sqrt(5))/2); round(tau*n) %o A006340 a(n) = rt(n+1)-rt(n) \\ _Felix Fröhlich_, Aug 26 2018 %Y A006340 Differs from A014675 in many places. Cf. A245216. %K A006340 nonn,easy,nice %O A006340 0,1 %A A006340 D. R. Hofstadter, Jul 15 1977 %E A006340 Extended by _N. J. A. Sloane_, Nov 07 2001