This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006351 M1885 #165 Jan 16 2025 12:38:16 %S A006351 1,2,8,52,472,5504,78416,1320064,25637824,564275648,13879795712, %T A006351 377332365568,11234698041088,363581406419456,12707452084972544, %U A006351 477027941930515456,19142041172838025216,817675811320888020992,37044610820729973813248,1774189422608238694776832 %N A006351 Number of series-parallel networks with n labeled edges. Also called yoke-chains by Cayley and MacMahon. %C A006351 For a simple relationship to series-reduced rooted trees, partitions of n, and phylogenetic trees among other combinatoric constructs, see comments in A000311. - _Tom Copeland_, Jan 06 2021 %D A006351 Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 417. %D A006351 P. A. MacMahon, Yoke-trains and multipartite compositions in connexion with the analytical forms called "trees", Proc. London Math. Soc. 22 (1891), 330-346; reprinted in Coll. Papers I, pp. 600-616. Page 333 gives A000084 = 2*A000669. %D A006351 P. A. MacMahon, The combination of resistances, The Electrician, 28 (1892), 601-602; reprinted in Coll. Papers I, pp. 617-619. %D A006351 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142. %D A006351 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A006351 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.40(a), S(x). %H A006351 Alois P. Heinz, <a href="/A006351/b006351.txt">Table of n, a(n) for n = 1..200</a> %H A006351 F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://algo.inria.fr/flajolet/Publications/BeFlSa92.pdf">Varieties of Increasing Trees</a>, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48. %H A006351 Veronica Bitonti, Bishal Deb, and Alan D. Sokal, <a href="https://arxiv.org/abs/2412.10214">Thron-type continued fractions (T-fractions) for some classes of increasing trees</a>, arXiv:2412.10214 [math.CO], 2024. See p. 58. %H A006351 Peter J. Cameron, <a href="https://doi.org/10.37236/1198">Counting two-graphs related to trees</a>, Elec. J. Combin., Vol. 2, #R4. [From _Aaron Meyerowitz_, Sep 30 2010] %H A006351 Frédéric Chapoton, Florent Hivert, and Jean-Christophe Novelli, <a href="http://arxiv.org/abs/1307.0092">A set-operad of formal fractions and dendriform-like sub-operads</a>, arXiv preprint arXiv:1307.0092 [math.CO], 2013 %H A006351 Diego Dominici, <a href="http://arxiv.org/abs/math/0501052">Nested derivatives: A simple method for computing series expansions of inverse functions</a>, arXiv:math/0501052 [math.CA], 2005. %H A006351 Brian Drake, <a href="http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf">An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.5.1 )</a>, Ph. D. dissertation, Brandeis Univ., 2008. %H A006351 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Series-parallel networks</a> %H A006351 Steven R. Finch, <a href="/A000084/a000084_2.pdf">Series-parallel networks</a>, July 7, 2003. [Cached copy, with permission of the author] %H A006351 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018. %H A006351 ISCGI, <a href="http://www.graphclasses.org/classes/gc_151.html">Cograph graphs</a> %H A006351 Song He, Fei Teng, and Yong Zhang, <a href="https://arxiv.org/abs/1907.06041">String Correlators: Recursive Expansion, Integration-by-Parts and Scattering Equations</a>, arXiv:1907.06041 [hep-th], 2019. Also in <a href="https://doi.org/10.1007/JHEP09(2019)085">Journal of High Energy Physics</a> (2019), 2019:85. %H A006351 Walter Knödel, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002470373">Über Zerfällungen</a>, Monatsh. Math., 55 (1951), 20-27. %H A006351 Vladimir Kruchinin, <a href="http://arxiv.org/abs/1211.3244">The method for obtaining expressions for coefficients of reverse generating functions</a>, arXiv:1211.3244 [math.CO], 2012. %H A006351 Z. A. Lomnicki, <a href="https://doi.org/10.2307/1425808">Two-terminal series-parallel networks</a>, Adv. Appl. Prob., 4 (1972), 109-150. %H A006351 Michael D. Moffitt, <a href="https://doi.org/10.1609/aaai.v36i9.21271">Search Strategies for Topological Network Optimization</a>, Proceedings of the AAAI Conference on Artificial Intelligence, 36(9) (2022), 10299-10308. %H A006351 John W. Moon, <a href="https://doi.org/10.1016/S0304-0208(08)73057-3">Some enumerative results on series-parallel networks</a>, Annals Discrete Math., 33 (1987), 199-226 (the e.g.f. U(x)). %H A006351 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A006351 <a href="/index/Res#revert">Index entries for reversions of series</a> %H A006351 <a href="/index/Mo#Moon87">Index entries for sequences mentioned in Moon (1987)</a> %H A006351 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> [From _Aaron Meyerowitz_, Sep 30 2010] %F A006351 For n >= 2, A006351(n) = 2*A000311(n) = A005640(n)/2^n. Row sums of A140945. %F A006351 E.g.f. is reversion of 2*log(1+x)-x. %F A006351 Also exponential transform of A000311, define b by 1+sum b_n x^n / n! = exp ( 1 + sum a_n x^n /n!). %F A006351 E.g.f.: A(x), B(x)=x*A(x) satisfies the differential equation B'(x)=(1+B(x))/(1-B(x)). - _Vladimir Kruchinin_, Jan 18 2011 %F A006351 From _Peter Bala_, Sep 05 2011: (Start) %F A006351 The generating function A(x) satisfies the autonomous differential equation A'(x) = (1+A)/(1-A) with A(0) = 0. Hence the inverse function A^-1(x) = int {t = 0..x} (1-t)/(1+t) = 2*log(1+x)-x, which yields A(x) = -1-2*W(-1/2*exp((x-1)/2)), where W is the Lambert W function. %F A006351 The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx((1+x)/(1-x)*g(x)). Compare with A032188. %F A006351 Applying [Bergeron et al., Theorem 1] to the result x = int {t = 0..A(x)} 1/phi(t), where phi(t) = (1+t)/(1-t) = 1 + 2*t + 2*t^2 + 2*t^3 + ..., leads to the following combinatorial interpretation for the sequence: a(n) gives the number of plane increasing trees on n vertices where each vertex of outdegree k >=1 can be in one of 2 colors. An example is given below. (End) %F A006351 A134991 gives (b.+c.)^n = 0^n , for (b_n)=A000311(n+1) and (c_0)=1, (c_1)=-1, and (c_n)=-2* A000311(n) = -A006351(n) otherwise. E.g., umbrally, (b.+c.)^2 = b_2*c_0 + 2 b_1*c_1 + b_0*c_2 =0. - _Tom Copeland_, Oct 19 2011 %F A006351 G.f.: 1/S(0) where S(k) = 1 - x*(k+1) - x*(k+1)/S(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Dec 18 2011 %F A006351 a(n) = ((n-1)!*sum(k=1..n-1, C(n+k-1,n-1)*sum(j=1..k, (-1)^(j)*C(k,j)* sum(l=0..j, (C(j,l)*(j-l)!*2^(j-l)*(-1)^l*stirling1(n-l+j-1,j-l))/ (n-l+j-1)!)))), n>1, a(1)=1. - _Vladimir Kruchinin_, Jan 24 2012 %F A006351 E.g.f.: A(x) = exp(B(x))-1 where B(x) is the e.g.f. of A000311. - _Vladimir Kruchinin_, Sep 25 2012 %F A006351 a(n) = sum_{k=0..n-1} A201637(n-1,k)*2^(n-k-1). - _Peter Luschny_, Nov 16 2012 %F A006351 G.f.: -1 + 2/Q(0), where Q(k)= 1 - k*x - x*(k+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 01 2013 %F A006351 a(n) ~ sqrt(2)*n^(n-1)/((2*log(2)-1)^(n-1/2)*exp(n)). - _Vaclav Kotesovec_, Jul 17 2013 %F A006351 G.f.: Q(0)/(1-x), where Q(k) = 1 - x*(k+1)/( x*(k+1) - (1 -x*(k+1))*(1 -x*(k+2))/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 10 2013 %F A006351 a(1) = 1; a(n) = a(n-1) + Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k). - _Ilya Gutkovskiy_, Aug 28 2020 %F A006351 Conjecture: a(n) = A379459(n-2,0) = A379460(n-1,0) for n > 1 with a(1) = 1. - _Mikhail Kurkov_, Jan 16 2025 %e A006351 D^3(1) = (12*x^2+56*x+52)/(x-1)^6. Evaluated at x = 0 this gives a(4) = 52. %e A006351 a(3) = 8: The 8 possible increasing plane trees on 3 vertices with vertices of outdegree k >= 1 coming in 2 colors, B or W, are %e A006351 ....................................................... %e A006351 .1B..1B..1W..1W.....1B.......1W........1B........1W.... %e A006351 .|...|...|...|...../.\....../..\....../..\....../..\... %e A006351 .2B..2W..2B..2W...2...3....2....3....3....2....3....2.. %e A006351 .|...|...|...|......................................... %e A006351 .3...3...3...3......................................... %e A006351 G.f. = x + 2*x^2 + 8*x^3 + 52*x^4 + 472*x^5 + 5504*x^6 + 78416*x^7 + ... %p A006351 read transforms; t1 := 2*ln(1+x)-x; t2 := series(t1,x,10); t3 := seriestoseries(t2,'revogf'); t4 := SERIESTOLISTMULT(%); %p A006351 # N denotes all series-parallel networks, S = series networks, P = parallel networks; %p A006351 spec := [ N, N=Union(Z,S,P),S=Set(Union(Z,P),card>=2), P=Set(Union(Z,S), card>=2)}, labeled ]: A006351 := n->combstruct[count](spec,size=n); %p A006351 A006351 := n -> add(combinat[eulerian2](n-1,k)*2^(n-k-1),k=0..n-1): %p A006351 seq(A006351(n), n=1..18); # _Peter Luschny_, Nov 16 2012 %t A006351 max = 18; f[x_] := 2*Log[1+x]-x; Rest[ CoefficientList[ InverseSeries[ Series[ f[x], {x, 0, max}], x], x]]*Range[max]! (* _Jean-François Alcover_, Nov 25 2011 *) %o A006351 (Maxima) a(n):=if n=1 then 1 else ((n-1)!*sum(binomial(n+k-1,n-1)* sum((-1)^(j)*binomial(k,j)*sum((binomial(j,l)*(j-l)!*2^(j-l)*(-1)^l* stirling1(n-l+j-1,j-l))/(n-l+j-1)!,l,0,j),j,1,k),k,1,n-1)); /* _Vladimir Kruchinin_, Jan 24 2012 */ %o A006351 (Sage) # uses[eulerian2 from A201637] %o A006351 def A006351(n): return add(A201637(n-1, k)*2^(n-k-1) for k in (0..n-1)) %o A006351 [A006351(n) for n in (1..18)] # _Peter Luschny_, Nov 16 2012 %o A006351 (PARI) x='x+O('x^66); Vec(serlaplace(serreverse( 2*log(1+x) - 1*x ))) \\ _Joerg Arndt_, May 01 2013 %Y A006351 Cf. A000311, A000084 (for unlabeled case), A032188. A140945. %Y A006351 Cf. A133314, A134991, A135494. %K A006351 nonn,easy,nice %O A006351 1,2 %A A006351 _N. J. A. Sloane_