This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006361 M5370 #38 Jan 18 2025 04:12:55 %S A006361 1,105,3490,59542,650644,5157098,32046856,164489084,723509159, %T A006361 2801747767,9748942554,30967306114,90930233726,249319296218, %U A006361 643622467414,1575086681342,3675063064675,8215220917795 %N A006361 Antichains (or order ideals) in the poset 2*2*4*n or size of the distributive lattice J(2*2*4*n). %D A006361 J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. %D A006361 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006361 J. Berman and P. Koehler, <a href="/A006356/a006356.pdf">Cardinalities of finite distributive lattices</a>, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy] %H A006361 G. Kreweras, <a href="http://www.numdam.org/item?id=MSH_1976__53__5_0">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30. %H A006361 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 9. %H A006361 <a href="/index/Pos#posets">Index entries for sequences related to posets</a>. %F A006361 Empirical G.f.: (x^10 +88*x^9 +1841*x^8 +13812*x^7 +44050*x^6 +64374*x^5 +44050*x^4 +13812*x^3 +1841*x^2 +88*x +1)/(1-x)^17. - _Colin Barker_, May 29 2012 %Y A006361 Cf. A000372, A056932, A006360, A006362, A056933, A056934, A056935, A056936, A056937. %K A006361 nonn,easy %O A006361 0,2 %A A006361 _N. J. A. Sloane_ %E A006361 More terms from _Mitch Harris_, Jul 16 2000