cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006361 Antichains (or order ideals) in the poset 2*2*4*n or size of the distributive lattice J(2*2*4*n).

This page as a plain text file.
%I A006361 M5370 #38 Jan 18 2025 04:12:55
%S A006361 1,105,3490,59542,650644,5157098,32046856,164489084,723509159,
%T A006361 2801747767,9748942554,30967306114,90930233726,249319296218,
%U A006361 643622467414,1575086681342,3675063064675,8215220917795
%N A006361 Antichains (or order ideals) in the poset 2*2*4*n or size of the distributive lattice J(2*2*4*n).
%D A006361 J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
%D A006361 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006361 J. Berman and P. Koehler, <a href="/A006356/a006356.pdf">Cardinalities of finite distributive lattices</a>, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
%H A006361 G. Kreweras, <a href="http://www.numdam.org/item?id=MSH_1976__53__5_0">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30.
%H A006361 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 9.
%H A006361 <a href="/index/Pos#posets">Index entries for sequences related to posets</a>.
%F A006361 Empirical G.f.: (x^10 +88*x^9 +1841*x^8 +13812*x^7 +44050*x^6 +64374*x^5 +44050*x^4 +13812*x^3 +1841*x^2 +88*x +1)/(1-x)^17. - _Colin Barker_, May 29 2012
%Y A006361 Cf. A000372, A056932, A006360, A006362, A056933, A056934, A056935, A056936, A056937.
%K A006361 nonn,easy
%O A006361 0,2
%A A006361 _N. J. A. Sloane_
%E A006361 More terms from _Mitch Harris_, Jul 16 2000