This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006374 M0214 #31 May 30 2025 19:28:33 %S A006374 1,1,2,2,2,2,2,3,3,2,4,4,2,4,4,4,4,3,4,6,4,2,6,6,3,6,6,4,6,4,6,7,4,4, %T A006374 8,8,2,6,8,6,8,4,4,10,6,4,10,8,5,7,8,6,6,8,8,12,4,2,12,8,6,8,10,8,8,8, %U A006374 4,12,8,4,14,9,4,10,10,10,8,4,10,14,9,4,12,12,4,10,12,6,12,10,8 %N A006374 Number of positive definite reduced binary quadratic forms of discriminant -4*n. %C A006374 In Hurwitz and Kritikos (HK) a definite form a*x^2 + 2*b*x*y + c*y^2, denoted by f(a,b,c), has discriminant Delta = -D = b^2 - 4*a*c < 0. Usually this is F = [a,2*b,c] with discriminant Disc = 4*(b^2 - a*c) = 4*Delta. A definite form is reduced if 2*|b| <= a <= c, and if any of the inequalities reduces to an equality then b >= 0 (HK, p. 179). The positive definite case has a > 0 and c > 0. Here the forms F do not need to satisfy gcd(a,2*b,c) = 1. - _Wolfdieter Lang_, Mar 31 2019 %D A006374 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 360. %D A006374 A. Hurwitz and N. Kritikos, transl. with add. material by W . C. Schulz, "Lectures on Number Theory", Springer-Verlag, New York, 1986, p. 186. %D A006374 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006374 Robin Visser, <a href="/A006374/b006374.txt">Table of n, a(n) for n = 1..10000</a> %F A006374 a(n) = A006371(2*n) for all n > 0. - _Robin Visser_, May 29 2025 %e A006374 a(5) = 2 because the two forms F = [a,2*b,c] with discriminant Disc = -4*5 = -20 are [1,0,5] and [2,2,3]. ([2,-2,3] is not reduced, (-2,2,-3) is not positive definite). - _Wolfdieter Lang_, Mar 31 2019 %o A006374 (Sage) %o A006374 def a(n): %o A006374 ans = 0 %o A006374 for b in range(-isqrt(n/3), isqrt(n/3)+1): %o A006374 for a in Integer(n+b^2).divisors(): %o A006374 if ((2*abs(b)==a) or (a^2==n+b^2)) and (b < 0): continue %o A006374 if (a >= 2*abs(b)) and (a^2 <= n+b^2): ans += 1 %o A006374 return ans # _Robin Visser_, May 29 2025 %Y A006374 Cf. A006371, A006375, A096446, A096445. %K A006374 nonn,nice,easy %O A006374 1,3 %A A006374 _N. J. A. Sloane_ %E A006374 Name clarified by _Wolfdieter Lang_, Mar 31 2019