This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006380 M2735 #31 Mar 07 2025 12:02:15 %S A006380 1,3,8,19,41,81,153,273,468,774,1240,1930,2933,4356,6341,9064,12743, %T A006380 17643,24093,32479,43270,57019,74377,96103,123089,156354,197081, %U A006380 246622,306519,378520,464614,567028,688276,831169,998845,1194793,1422899,1687447,1993182 %N A006380 Number of equivalence classes of 4 X n binary matrices when one can permute rows, permute columns and complement columns. %D A006380 M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051. %D A006380 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006380 Andrew Howroyd, <a href="/A006380/b006380.txt">Table of n, a(n) for n = 0..1000</a> %H A006380 M. A. Harrison, <a href="/A000711/a000711.pdf">On the number of classes of binary matrices</a>, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy) %H A006380 <a href="/index/Mat#binmat">Index entries for sequences related to binary matrices</a> %H A006380 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2,-2,2,5,-8,6,-8,5,2,-2,2,-5,4,-1). %H A006380 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a> %F A006380 G.f.: (1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2). - _Andrew Howroyd_, May 30 2023 %t A006380 LinearRecurrence[{4,-5,2,-2,2,5,-8,6,-8,5,2,-2,2,-5,4,-1},{1,3,8,19,41,81,153,273,468,774,1240,1930,2933,4356,6341,9064},40] (* _Harvey P. Dale_, Nov 23 2024 *) %o A006380 (PARI) Vec((1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2) + O(x^41)) \\ _Andrew Howroyd_, May 30 2023 %Y A006380 Row n=4 of A363349. %Y A006380 Cf. A000601, A006148, A006383. %K A006380 nonn,easy %O A006380 0,2 %A A006380 _N. J. A. Sloane_ %E A006380 Terms a(7) onwards from _Max Alekseyev_, Feb 05 2010