cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006385 Number of unsensed planar maps with n edges.

This page as a plain text file.
%I A006385 M1279 #44 Jan 20 2025 20:24:42
%S A006385 1,2,4,14,52,248,1416,9172,66366,518868,4301350,37230364,333058463,
%T A006385 3057319072,28656583950,273298352168,2645186193457,25931472185976,
%U A006385 257086490694917,2574370590192556,26010904915620261
%N A006385 Number of unsensed planar maps with n edges.
%C A006385 The planar maps considered are connected and may contain loops and parallel edges. - _Andrew Howroyd_, Jan 13 2025
%D A006385 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A006385 T. R. S. Walsh, personal communication.
%H A006385 Richard Kapolnai, Gabor Domokos, and Timea Szabo, <a href="http://arxiv.org/abs/1206.1698">Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes</a>, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698, 2012. See Table 2.
%H A006385 Valery. A. Liskovets, <a href="http://dx.doi.org/10.1016/0012-365X(94)00347-L">A reductive technique for enumerating nonisomorphic planar maps</a>, Discr. Math., v.156 (1996), 197-217.
%H A006385 Timothy R. Walsh, <a href="https://doi.org/10.1137/0604018">Generating nonisomorphic maps without storing them</a>, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
%H A006385 Timothy R. Walsh, <a href="http://www.info2.uqam.ca/~walsh_t/papers/GENERATING NONISOMORPHIC.pdf">Space-efficient generation of nonisomorphic maps and hypermaps</a>
%H A006385 Timothy R. Walsh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Walsh/walsh3.html">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>, J. Int. Seq. 18 (2015) # 15.4.3
%H A006385 Nicholas C. Wormald, <a href="http://dx.doi.org/10.1016/0012-365X(81)90238-7">Counting unrooted planar maps</a>, Discrete Math. 36 (1981), no. 2, 205-225.
%F A006385 a(n) = (A006384(n) + A006443(n))/2. - _Andrew Howroyd_, Jan 13 2025
%Y A006385 Antidiagonal sums of A277741.
%Y A006385 Column k=0 of A379439.
%Y A006385 Cf. A000168 (rooted), A006384 (sensed), A006443 (achiral), A006403 (2-connected), A090376.
%Y A006385 Cf. A006387 (genus 1), A214814 (genus 2), A214815 (genus 3), A214816.
%K A006385 nonn,nice,more
%O A006385 0,2
%A A006385 _N. J. A. Sloane_
%E A006385 a(18)-a(19) added by _Andrew Howroyd_, Jan 13 2025
%E A006385 a(20) added by _Andrew Howroyd_, Jan 20 2025