This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006483 M2502 #40 Oct 01 2022 16:19:05 %S A006483 1,3,5,17,49,161,513,1665,5377,17409,56321,182273,589825,1908737, %T A006483 6176769,19988481,64684033,209321985,677380097,2192048129,7093616641, %U A006483 22955425793,74285318145,240392339457,777925951489,2517421260801,8146546327553,26362777698305 %N A006483 a(n) = Fibonacci(n)*2^n + 1. %D A006483 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006483 Vincenzo Librandi, <a href="/A006483/b006483.txt">Table of n, a(n) for n = 0..1000</a> %H A006483 D. S. Kluk and N. J. A. Sloane, <a href="/A002050/a002050_3.pdf">Correspondence, 1979</a>. %H A006483 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A006483 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A006483 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,2,-4). %F A006483 G.f.: -(-1+6*x^2)/((1-x)*(1-2*x-4*x^2)). %p A006483 A006483:=-(-1+6*z**2)/(z-1)/(4*z**2+2*z-1); # _Simon Plouffe_ in his 1992 dissertation %t A006483 lst={};Do[AppendTo[lst, Fibonacci[n]*2^n+1], {n, 0, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 19 2008 *) %t A006483 CoefficientList[Series[(-(- 1 + 6 x^2)) / ((1 - x) (1 - 2 x - 4 x^2)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 09 2013 *) %t A006483 LinearRecurrence[{3,2,-4},{1,3,5},40] (* _Harvey P. Dale_, Aug 01 2021 *) %o A006483 (Magma) [Fibonacci(n)*2^n + 1: n in [0..50]]; // _Vincenzo Librandi_, Jun 09 2013 %Y A006483 Cf. A000045, A063727, A087206. %Y A006483 Equals A103435 + 1. %K A006483 nonn,easy %O A006483 0,2 %A A006483 Dennis S. Kluk (mathemagician(AT)ameritech.net) %E A006483 G.f. in Formula field corrected by _Vincenzo Librandi_, Jun 09 2013