cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006487 Denominators of greedy Egyptian fraction for square root of 2.

This page as a plain text file.
%I A006487 M2962 #50 Feb 16 2025 08:32:30
%S A006487 1,3,13,253,218201,61323543802,5704059172637470075854,
%T A006487 178059816815203395552917056787722451335939040,
%U A006487 227569456678536847041583520060628448125647436561262746582115170178319521793841532532509636
%N A006487 Denominators of greedy Egyptian fraction for square root of 2.
%C A006487 Conjecture: Let a(n) = 2^2^(n + b(n)), then b(n) converges to a constant that is about 0.2163... - _Manfred Scheucher_, Aug 17 2015
%D A006487 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006487 Manfred Scheucher, <a href="/A006487/b006487.txt">Table of n, a(n) for n = 0..11</a>
%H A006487 Manfred Scheucher, <a href="/A006487/a006487_1.txt">Table of n, a(n) for n = 0..14</a>
%H A006487 Manfred Scheucher, <a href="/A006487/a006487.sage.txt">Sage Script</a>.
%H A006487 D. S. Kluk and N. J. A. Sloane, <a href="/A002050/a002050_3.pdf">Correspondence, 1979</a>.
%H A006487 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>.
%H A006487 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%F A006487 a(n) = ceiling(1/(sqrt(2) - Sum_{j=0..n-1} 1/a(j))). - _Jon E. Schoenfield_, Dec 26 2014
%e A006487 sqrt(2) = 1 + 1/3 + 1/13 + 1/253 + 1/218201 + ... . - _Jon E. Schoenfield_, Dec 26 2014
%p A006487 a[0]:= 1;
%p A006487 for n from 1 to 10 do
%p A006487   v:= ceil(1/(sqrt(2)-add(1/a[i],i=0..n-1)));
%p A006487   while not v::integer do
%p A006487     Digits:= 2*Digits;
%p A006487     v:= ceil(1/(sqrt(2)-add(1/a[i],i=0..n-1)))
%p A006487   od;
%p A006487   a[n]:= v;
%p A006487 od:
%p A006487 seq(a[i],i=0..10); # _Robert Israel_, Aug 17 2015
%t A006487 lst={};k=N[Sqrt[2],1000];Do[s=Ceiling[1/k];AppendTo[lst,s];k=k-1/s,{n,12}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 02 2009 *)
%K A006487 nonn
%O A006487 0,2
%A A006487 _N. J. A. Sloane_, _Simon Plouffe_
%E A006487 a(8) from _Manfred Scheucher_, Aug 17 2015