This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006524 M3509 #38 Feb 16 2025 08:32:30 %S A006524 4,15,609,845029,1010073215739,1300459886313272270974271, %T A006524 1939680952094609786557359582286462958434022504402 %N A006524 Egyptian fraction for 1/ Pi. %D A006524 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006524 Vincenzo Librandi, <a href="/A006524/b006524.txt">Table of n, a(n) for n = 1..11</a> [a(11) corrected by _Georg Fischer_, Jun 04 2019] %H A006524 H. P. Robinson, <a href="/A001466/a001466.pdf">Letter to N. J. A. Sloane, Sep 1975</a> %H A006524 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a> %H A006524 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a> %H A006524 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a> %t A006524 a = {}; k = N[1/Pi, 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (* _Artur Jasinski_, Sep 22 2008 *) %o A006524 (PARI) x = 1/Pi; %o A006524 f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k)); %o A006524 n(x, k) = ceil(1/f(x, k - 1)); %o A006524 for(k = 1, 7, print1(n(x, k),", ")) \\ _Indranil Ghosh_, Mar 27 2017 %K A006524 nonn,frac %O A006524 1,1 %A A006524 _N. J. A. Sloane_, _Robert G. Wilson v_ %E A006524 More terms from _Herman P. Robinson_ %E A006524 Offset changed to 1 by _Indranil Ghosh_, Mar 27 2017