This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006569 M3731 #40 Jan 24 2024 08:49:23 %S A006569 1,-1,1,1,-1,-5,-1,7,13,-307,-479,1837,100921,15587,-23737,-5729723, %T A006569 14731223,9129833,2722952839,-4700745901,-1556262845,190717213397, %U A006569 24684889339847,-50242799489,-148437433077277,-8592042383621,221844330989749,176585172615885307,-9245931549625447 %N A006569 Numerators of generalized Bernoulli numbers. %D A006569 F. T. Howard, A sequence of numbers related to the exponential function, Duke Math. J., 34 (1967), 599-615. %D A006569 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006569 Hector Blandin and Rafael Diaz, <a href="http://arXiv.org/abs/0708.0809">Compositional Bernoulli numbers</a>, arXiv:0708.0809 [math.CO], 2007-2008, Page 7, 2nd table is identical to A006569/A006568. %H A006569 Abdul Hassen and Hieu D. Nguyen, <a href="http://arXiv.org/abs/math/0509637">Hypergeometric Zeta Functions</a>, arXiv:math/0509637 [math.NT], Sep 27 2005. %H A006569 <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a> %F A006569 Recurrence relation: Bernoulli(n+1) = a(n+1) - Sum_{r=1..n+1} binomial(n+1, r)*Bernoulli(r)*a(n+2-r); a(0)=1 (p. 603 of the Howard reference). - _Emeric Deutsch_, Jan 23 2005 %F A006569 E.g.f. for fractions: x^2/2 / (e^x-1-x). - _Franklin T. Adams-Watters_, Nov 04 2009 %p A006569 eq:=n->bernoulli(n+1)=a[n+1]-sum(binomial(n+1,r)*bernoulli(r)*a[n+2-r],r=1..n+1): a[0]:=1:for n from 0 to 28 do a[n+1]:=solve(eq(n),a[n+1]) od: seq(numer(a[n]),n=0..29); # _Emeric Deutsch_, Jan 23 2005 %t A006569 rows = 29; M = Table[If[n-1 <= k <= n, 0, Binomial[n, k]], {n, 2, rows+1}, {k, 0, rows-1}] // Inverse; %t A006569 M[[All, 1]] // Numerator (* _Jean-François Alcover_, Jul 14 2018 *) %o A006569 (Sage) %o A006569 def A006569_list(len): %o A006569 f, R, C = 1, [1], [1]+[0]*(len-1) %o A006569 for n in (1..len-1): %o A006569 f *= n %o A006569 for k in range(n, 0, -1): %o A006569 C[k] = C[k-1] / (k+2) %o A006569 C[0] = -sum(C[k] for k in (1..n)) %o A006569 R.append((C[0]*f).numerator()) %o A006569 return R %o A006569 print(A006569_list(29)) # _Peter Luschny_, Feb 20 2016 %Y A006569 Cf. A006568. %Y A006569 Cf. A132092-A132099. %K A006569 frac,sign,easy %O A006569 0,6 %A A006569 _N. J. A. Sloane_ %E A006569 More terms from _Emeric Deutsch_, Jan 23 2005