cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006582 a(n) = Sum_{k=1..n-1} k XOR n-k.

Original entry on oeis.org

0, 6, 4, 12, 20, 42, 32, 40, 48, 78, 84, 116, 148, 210, 176, 176, 176, 214, 212, 252, 292, 378, 368, 408, 448, 542, 580, 676, 772, 930, 832, 800, 768, 806, 772, 812, 852, 970, 928, 968, 1008, 1134, 1172, 1300, 1428, 1650, 1584, 1616, 1648, 1782, 1812, 1948
Offset: 2

Views

Author

Keywords

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of array A003987.

Programs

  • Maple
    A006582 := proc(n)
        add(A003987(k,n-k),k=1..n-1) ;
    end proc: # R. J. Mathar, Apr 17 2013
  • Mathematica
    Array[Sum[BitXor[k, # - k], {k, # - 1}] &, 52, 2] (* Michael De Vlieger, Oct 27 2022 *)
  • PARI
    a(n)=if(n<2,0,if(n%2==0,2*a(n/2)+2*a(n/2-1)+4*(n/2-1),4*a((n-1)/2)+6*((n-1)/2)))
    
  • PARI
    a(n)=sum(k=1,n-1, bitxor(k,n-k)) \\ Charles R Greathouse IV, Aug 11 2017
    
  • Python
    def A006582(n): return sum(k^n-k for k in range(1,n+1>>1))<<1 # Chai Wah Wu, May 07 2023

Formula

G.f.: 1/(1-x)^2 * Sum_{k>=0} 2^k * t^3(4t+6)/(1+t)^2, t=x^2^k. - Ralf Stephan, Feb 12 2003
a(0) = a(1) = 0, a(2n) = 2a(n) + 2a(n-1) + 4n - 4, a(2n+1) = 4a(n) + 6n. - Ralf Stephan, Oct 09 2003
a(n) = 2*(Sum_{k=1..floor((n-1)/2)} k XOR n-k). - Chai Wah Wu, May 07 2023