This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006600 M4513 #50 Nov 26 2024 10:06:27 %S A006600 1,8,35,110,287,632,1302,2400,4257,6956,11297,17234,25935,37424,53516, %T A006600 73404,101745,136200,181279,236258,306383,389264,495650,620048,772785, %U A006600 951384,1167453,1410350,1716191,2058848,2463384,2924000,3462305,4067028,4776219,5568786,6479551 %N A006600 Total number of triangles visible in regular n-gon with all diagonals drawn. %C A006600 Place n equally-spaced points on a circle, join them in all possible ways; how many triangles can be seen? %D A006600 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006600 T. D. Noe, <a href="/A006600/b006600.txt">Table of n, a(n) for n=3..1000</a> %H A006600 Sascha Kurz, <a href="http://www.mathe2.uni-bayreuth.de/sascha/oeis/drawing/drawing.html">m-gons in regular n-gons</a> %H A006600 Victor Meally, <a href="/A006556/a006556.pdf">Letter to N. J. A. Sloane</a>, no date. %H A006600 B. Poonen and M. Rubinstein, <a href="http://epubs.siam.org:80/sam-bin/dbq/article/28124">Number of Intersection Points Made by the Diagonals of a Regular Polygon</a>, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156. %H A006600 B. Poonen and M. Rubinstein, <a href="http://math.mit.edu/~poonen/papers/ngon.pdf">The number of intersection points made by the diagonals of a regular polygon</a>, SIAM J. on Discrete Mathematics, Vol. 11, No. 1, 135-156 (1998). %H A006600 B. Poonen and M. Rubinstein, <a href="http://arXiv.org/abs/math.MG/9508209">The number of intersection points made by the diagonals of a regular polygon</a>, arXiv version, which has fewer typos than the SIAM version. %H A006600 B. Poonen and M. Rubinstein, <a href="http://math.mit.edu/~poonen/papers/ngon.m">Mathematica programs for these sequences</a> %H A006600 M. Rubinstein, <a href="/A006561/a006561_3.pdf">Drawings for n=4,5,6,...</a> %H A006600 T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/SEQUENCES/triangle_counting">Number of triangles for convex n-gon</a> %H A006600 S. E. Sommars and T. Sommars, <a href="http://www.cs.uwaterloo.ca/journals/JIS/sommars/newtriangle.html">Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon</a>, J. Integer Sequences, 1 (1998), #98.1.5. %H A006600 <a href="/index/Pol#Poonen">Sequences formed by drawing all diagonals in regular polygon</a> %F A006600 a(2n-1) = A005732(2n-1) for n > 1; a(2n) = A005732(2n) - A260417(n) for n > 1. - _Jonathan Sondow_, Jul 25 2015 %e A006600 a(4) = 8 because in a quadrilateral the diagonals cross to make four triangles, which pair up to make four more. %t A006600 del[m_,n_]:=If[Mod[n,m]==0,1,0]; Tri[n_]:=n(n-1)(n-2)(n^3+18n^2-43n+60)/720 - del[2,n](n-2)(n-7)n/8 - del[4,n](3n/4) - del[6,n](18n-106)n/3 + del[12,n]*33n + del[18,n]*36n + del[24,n]*24n - del[30,n]*96n - del[42,n]*72n - del[60,n]*264n - del[84,n]*96n - del[90,n]*48n - del[120,n]*96n - del[210,n]*48n; Table[Tri[n], {n,3,1000}] (* _T. D. Noe_, Dec 21 2006 *) %Y A006600 Often confused with A005732. %Y A006600 Cf. A203016, A260417. %Y A006600 Row sums of A363174. %Y A006600 Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file. %K A006600 nonn,easy,nice %O A006600 3,2 %A A006600 _N. J. A. Sloane_ %E A006600 a(3)-a(8) computed by Victor Meally (personal communication to _N. J. A. Sloane_, circa 1975); later terms and recurrence from S. Sommars and T. Sommars.