This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006602 M1532 #72 May 02 2025 01:27:05 %S A006602 2,1,2,5,20,180,16143,489996795,1392195548399980210, %T A006602 789204635842035039135545297410259322 %N A006602 a(n) is the number of hierarchical models on n unlabeled factors or variables with linear terms forced. %C A006602 Also number of pure (= irreducible) group-testing histories of n items - A. Boneh, Mar 31 2000 %C A006602 Also number of antichain covers of an unlabeled n-set, so a(n) equals first differences of A003182. - _Vladeta Jovovic_, Goran Kilibarda, Aug 18 2000 %C A006602 Also number of inequivalent (under permutation of variables) nondegenerate monotone Boolean functions of n variables. We say h and g (functions of n variables) are equivalent if there exists a permutation p of S_n such that hp=g. E.g., a(3)=5 because xyz, xy+xz+yz, x+yz+xyz, xy+xz+xyz, x+y+z+xy+xz+yz+xyz are 5 inequivalent nondegenerate monotone Boolean functions that generate (by permutation of variables) the other 4. For example, y+xz+xyz can be obtained from x+yz+xyz by exchanging x and y. - Alan Veliz-Cuba (alanavc(AT)vt.edu), Jun 16 2006 %C A006602 The non-spanning/covering case is A003182. The labeled case is A006126. - _Gus Wiseman_, Feb 20 2019 %D A006602 Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - _Petros Hadjicostas_, Apr 10 2020] %D A006602 V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. %D A006602 A. A. Mcintosh, personal communication. %D A006602 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006602 Aniruddha Biswas and Palash Sarkar, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Biswas/biswas6.html">Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See p. 14. %H A006602 V. Jovovic and G. Kilibarda, <a href="http://mi.mathnet.ru/eng/dm/v11/i4/p127">On the number of Boolean functions in the Post classes F^{mu}_8</a>, Diskretnaya Matematika, 11(4) (1999), 127-138 (<a href="https://doi.org/10.1515/dma.1999.9.6.593">translated</a> in Discrete Mathematics and Applications, 9(6) (1999), 593-605). %H A006602 C. Lienkaemper, <a href="http://www.math.tamu.edu/REU/results/REU_2015/lienreport.pdf">When do neural codes come from convex or good covers?</a>, 2015. %H A006602 C. L. Mallows, <a href="/A000372/a000372_5.pdf">Emails to N. J. A. Sloane, Jun-Jul 1991</a> %H A006602 Gus Wiseman, <a href="/A048143/a048143_4.txt">Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons</a>. %F A006602 a(n) = A007411(n) + 1. %F A006602 First differences of A003182. - _Gus Wiseman_, Feb 23 2019 %e A006602 From _Gus Wiseman_, Feb 20 2019: (Start) %e A006602 Non-isomorphic representatives of the a(0) = 2 through a(4) = 20 antichains: %e A006602 {} {{1}} {{12}} {{123}} {{1234}} %e A006602 {{}} {{1}{2}} {{1}{23}} {{1}{234}} %e A006602 {{13}{23}} {{12}{34}} %e A006602 {{1}{2}{3}} {{14}{234}} %e A006602 {{12}{13}{23}} {{1}{2}{34}} %e A006602 {{134}{234}} %e A006602 {{1}{24}{34}} %e A006602 {{1}{2}{3}{4}} %e A006602 {{13}{24}{34}} %e A006602 {{14}{24}{34}} %e A006602 {{13}{14}{234}} %e A006602 {{12}{134}{234}} %e A006602 {{1}{23}{24}{34}} %e A006602 {{124}{134}{234}} %e A006602 {{12}{13}{24}{34}} %e A006602 {{14}{23}{24}{34}} %e A006602 {{12}{13}{14}{234}} %e A006602 {{123}{124}{134}{234}} %e A006602 {{13}{14}{23}{24}{34}} %e A006602 {{12}{13}{14}{23}{24}{34}} %e A006602 (End) %Y A006602 Cf. A000372, A003182, A006126 (labeled case), A007411, A014466, A261005, A293993, A304997, A304998, A304999, A305001, A305855, A306505, A320449, A321679. %K A006602 nonn,nice,hard %O A006602 0,1 %A A006602 _Colin Mallows_ %E A006602 a(6) from A. Boneh, 32 Hantkeh St., Haifa 34608, Israel, Mar 31 2000 %E A006602 Entry revised by _N. J. A. Sloane_, Jul 23 2006 %E A006602 a(7) from A007411 and A003182. - _N. J. A. Sloane_, Aug 13 2015 %E A006602 Named edited by _Petros Hadjicostas_, Apr 08 2020 %E A006602 a(8) from A003182. - _Bartlomiej Pawelski_, Nov 27 2022 %E A006602 a(9) from A007411. - _Dmitry I. Ignatov_, Nov 27 2023