This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006635 M4860 #33 Nov 29 2024 23:50:45 %S A006635 1,12,114,1012,8775,75516,649264,5593068,48336171,419276660, %T A006635 3650774820,31907617560,279871768995,2463161027292,21747225841440, %U A006635 192575673551584,1710009515037060,15223466050169520,135853465827080970,1215067013768834100 %N A006635 From generalized Catalan numbers. %D A006635 H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982. %D A006635 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006635 Simon Plouffe, <a href="http://arxiv.org/abs/0911.4975">Approximations of generating functions and a few conjectures</a>, Master's Thesis, UQAM 1992; arXiv:0911.4975 [math.NT], 2009. %F A006635 4F3([3,7/2,15/4,13/4],[5,14/3,13/3],256*x/27) - _Simon Plouffe_, Master's thesis, UQAM 1992 %F A006635 G.f.: g^12 where g is the g.f. of A002293. - _Sean A. Irvine_, May 25 2017 %t A006635 terms = 20; g[_] = 0; Do[g[x_] = 1 + x g[x]^4 + O[x]^terms, terms]; %t A006635 CoefficientList[g[x]^12, x] (* _Jean-François Alcover_, Oct 07 2018, after _Sean A. Irvine_ *) %Y A006635 Cf. A002293, A196678, A006633, A233658, A233666, A006634, A233667. %K A006635 nonn %O A006635 0,2 %A A006635 _Simon Plouffe_ %E A006635 More terms from _Sean A. Irvine_, May 25 2017