This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006665 M5156 #18 Jul 08 2025 16:52:06 %S A006665 1,24,276,2024,10602,41952,128500,303048,517155,463496,-609684, %T A006665 -3757992,-9340852,-14912280,-12957624,8669712,59707149,132295080, %U A006665 183499244,131501856,-113698752,-575221744,-1111921752,-1363192680,-824406065,889513752,3638565960,6404250248 %N A006665 G.f.: { ( Product_{j=1..infinity} (1-x^j) - 1 )/x }^24. %D A006665 H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440. %D A006665 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006665 H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy) %p A006665 t1:=mul(1-x^j,j=1..60); t2:=series(t1-1,x,60); t3:=series((t2/x)^24,x,60); seriestolist(%); %o A006665 (PARI) a(n)=if(n<0,0,polcoeff(((eta(x+x^2*O(x^n))-1)/x)^24,n)) %K A006665 sign %O A006665 0,2 %A A006665 _N. J. A. Sloane_ %E A006665 Entry revised Sep 11 2004