This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006692 M5298 #35 Aug 13 2025 10:19:59 %S A006692 49,6877,1854545,807478656,514798204147,451182323794896, %T A006692 519961864703259753,762210147961330421167,1384945048774500147047194, %U A006692 3055115321627096660341307614,8043516699726480852467167758419,24915939138210507189761922944830006,89709850983809128394441772076036629240 %N A006692 Number of connected n-state finite automata with 3 inputs. %C A006692 Is this sequence essentially the same as A304313? - _Paul D. Hanna_, May 11 2018 %D A006692 Robert W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651 (86g:05026). %D A006692 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006692 Hugo Pfoertner, <a href="/A006692/b006692.txt">Table of n, a(n) for n = 1..200</a> %H A006692 R. W. Robinson, <a href="/A006689/a006689_1.pdf">Counting strongly connected finite automata</a>, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651. (86g:05026). [Annotated scanned copy, with permission of the author.] %Y A006692 Cf. A027834, A006691, A304313. %K A006692 nonn %O A006692 1,1 %A A006692 _N. J. A. Sloane_ %E A006692 Extended using the PARI program by _Paul D. Hanna_ in A027834 by _Hugo Pfoertner_, May 22 2018