cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006695 a(2n)=2*a(2n-2)^2-1, a(2n+1)=2*a(2n)-1, a(0)=2.

This page as a plain text file.
%I A006695 M0838 #31 Jan 05 2025 19:51:34
%S A006695 2,3,7,13,97,193,18817,37633,708158977,1416317953,1002978273411373057,
%T A006695 2005956546822746113,2011930833870518011412817828051050497,
%U A006695 4023861667741036022825635656102100993
%N A006695 a(2n)=2*a(2n-2)^2-1, a(2n+1)=2*a(2n)-1, a(0)=2.
%C A006695 An infinite coprime sequence defined by recursion.
%C A006695 Every term is relatively prime to all others. - _Michael Somos_, Feb 01 2004
%D A006695 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006695 T. D. Noe, <a href="/A006695/b006695.txt">Table of n, a(n) for n=0..19</a>
%H A006695 S. Kalpazidou et al., <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa55/aa5542.pdf">Lüroth-type alternating series representations for real numbers</a>, Acta Arithmetica, 55 (1990), 311-322.
%H A006695 Jeffrey Shallit, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/31-1/shallit.pdf">Rational numbers with non-terminating, non-periodic modified Engel-type expansions</a>, Fib. Quart., 31 (1993), 37-40.
%H A006695 <a href="/index/El#Engel">Index entries for sequences related to Engel expansions</a>
%F A006695 a(2n) = A001075(2^n).
%t A006695 nxt[{n_,a_,b_}]:=If[OddQ[n],{n+1,b,2a^2-1},{n+1,b,2b-1}]; Transpose[ NestList[ nxt,{1,2,3},15]][[2]] (* _Harvey P. Dale_, Jun 22 2015 *)
%o A006695 (PARI) a(n)=if(n<1,2*(n==0),if(n%2,2*a(n-1)-1,2*a(n-2)^2-1))
%Y A006695 Cf. A001075, A001685, A002715, A003686, A064526.
%K A006695 nonn,easy,nice
%O A006695 0,1
%A A006695 _N. J. A. Sloane_