cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006714 Number of trivalent bipartite labeled graphs with 2n labeled nodes.

This page as a plain text file.
%I A006714 M4757 #26 Feb 17 2024 05:45:49
%S A006714 10,840,257040,137260200,118273755600,154712104747200,
%T A006714 292311804557572800,766931112143320924800,2706462791802644002128000,
%U A006714 12512595130808078973370704000,74130965352250071944327288640000,552334353713465817349513210512960000,5092566798555894395129552704613028960000
%N A006714 Number of trivalent bipartite labeled graphs with 2n labeled nodes.
%C A006714 R. C. Read incorrectly has a(7) = 118257539400 and a(8) = 154678050727200 which he calculated by hand. - _Sean A. Irvine_, Jun 27 2017
%D A006714 R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
%D A006714 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006714 Andrew Howroyd, <a href="/A006714/b006714.txt">Table of n, a(n) for n = 3..50</a>
%H A006714 R. C. Read, <a href="/A002831/a002831.pdf">Letter to N. J. A. Sloane, Feb 04 1971</a> (gives initial terms of this sequence)
%F A006714 a(n) = A246599(n) + Sum_{k=1..n-1} binomial(2*n-1,2*k-1)*A246599(k)*a(n-k). - _Andrew Howroyd_, May 22 2018
%F A006714 a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n+2)). - _Vaclav Kotesovec_, Feb 17 2024
%t A006714 (* b stands for A001501 *) b[n_] := n!^2 Sum[2^(2k-n) 3^(k-n) (3(n-k))!  HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k)!^2), {k, 0, n}]/6^n;
%t A006714 (* c stands for A246599 *) c[n_] := c[n] = Binomial[2n-1, n] b[n] - Sum[ Binomial[2n-1, 2k] Binomial[2k, k] b[k] c[n-k], {k, 1, n-1}];
%t A006714 a[n_] := a[n] = c[n] + Sum[Binomial[2n-1, 2k-1] c[k] a[n-k], {k, 1, n-1}];
%t A006714 Table[a[n], {n, 3, 20}] (* _Jean-François Alcover_, Jul 07 2018, after _Andrew Howroyd_ *)
%o A006714 (PARI) \\ here b(n) is A001501
%o A006714 b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
%o A006714 seq(n)={my(v=vector(n,n,b(n)*binomial(2*n-1,n)), u=vector(n), s=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, 2*binomial(2*n-1,2*k)*v[k]*u[n-k]); s[n]=u[n] + sum(k=3, n-3, binomial(2*n-1,2*k-1)*u[k]*s[n-k])); s[3..n]} \\ _Andrew Howroyd_, May 22 2018
%Y A006714 Cf. A001501, A002829, A004109, A246599.
%K A006714 nonn
%O A006714 3,1
%A A006714 _N. J. A. Sloane_
%E A006714 a(7)-a(8) corrected and a(9)-a(12) computed with nauty by _Sean A. Irvine_, Jun 27 2017
%E A006714 Terms a(13) and beyond from _Andrew Howroyd_, May 22 2018