cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006788 a(n) = floor(2^(n-1)/n).

This page as a plain text file.
%I A006788 M0712 #58 Feb 16 2025 08:32:30
%S A006788 1,1,1,2,3,5,9,16,28,51,93,170,315,585,1092,2048,3855,7281,13797,
%T A006788 26214,49932,95325,182361,349525,671088,1290555,2485513,4793490,
%U A006788 9256395,17895697,34636833,67108864,130150524,252645135,490853405,954437176,1857283155,3616814565
%N A006788 a(n) = floor(2^(n-1)/n).
%C A006788 Very close to A000048. [Fisher, 1989]
%C A006788 This is the number of nested polygons needed to produce a graph that is always concave, see the MathWorld article. - _Jon Perry_, Sep 15 2002
%D A006788 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006788 Vincenzo Librandi, <a href="/A006788/b006788.txt">Table of n, a(n) for n = 1..1000</a>
%H A006788 H. L. Fisher, <a href="/A027601/a027601.pdf">Letter to N. J. A. Sloane, Mar 16 1989</a>
%H A006788 Simon Michalowsky, Bahman Gharesifard and Christian Ebenbauer, <a href="https://arxiv.org/abs/1711.05486">A Lie bracket approximation approach to distributed optimization over directed graphs</a>, arXiv:1711.05486 [math.OC], 2017.
%H A006788 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HappyEndProblem.html">Happy End Problem</a>
%t A006788 Table[Quotient[2^n, 2*n], {n, 1, 60}] (* _Vladimir Joseph Stephan Orlovsky_, May 07 2011 *)
%o A006788 (Magma) [Floor(2^(n-1)/n) : n in [1..40]]; // _Vincenzo Librandi_, Sep 24 2011
%o A006788 (Sage)
%o A006788 A006788 = lambda n: (1<<n)//(2*n)
%o A006788 [A006788(n) for n in (1..38)] # _Peter Luschny_, Sep 18 2014
%o A006788 (Python)
%o A006788 print([2**(n-1)//n for n in range(1, 40)]) # _Gennady Eremin_, Feb 04 2022
%Y A006788 Cf. A054650, A000048.
%K A006788 nonn
%O A006788 1,4
%A A006788 _N. J. A. Sloane_