This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006791 M2373 #29 Jul 08 2025 16:54:44 %S A006791 1,0,1,1,3,4,12,23,71,187,627,1970,6833,23384,82625,292164,1045329, %T A006791 3750277,13532724,48977625,177919099,648145255,2368046117,8674199554, %U A006791 31854078139,117252592450,432576302286,1599320144703,5925181102878 %N A006791 Number of cyclically-5-connected planar trivalent graphs with 2n nodes. %C A006791 This sequence and A111358 are the same sequence. The correspondence is just that these objects are planar duals of each other. But the offset and step are different: if the cubic graph has 2*n vertices, the dual triangulation has n+2 vertices. - _Brendan McKay_, May 24 2017 %D A006791 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006791 D. A. Holton and B. D. McKay, <a href="http://dx.doi.org/10.1016/0095-8956(88)90075-5">The smallest non-hamiltonian 3-connected cubic planar graphs have 38 vertices</a>, J. Combinat. Theory B vol 45, iss. 3 (1988) 305-319. %H A006791 D. A. Holton and B. D. McKay, <a href="http://dx.doi.org/10.1016/0095-8956(89)90025-7">Erratum</a>, J. Combinat. Theory B vol 47, iss. 2 (1989) 248. %H A006791 B. McKay, <a href="/A006791/a006791.pdf">Email to N. J. A. Sloane, Jul. 1991</a> %H A006791 Irene Pivotto, Gordon Royle, <a href="https://arxiv.org/abs/1901.10683">Highly-connected planar cubic graphs with few or many Hamilton cycles</a>, arXiv:1901.10683 [math.CO], 2019. %Y A006791 Cf. A111358. %K A006791 nonn %O A006791 10,5 %A A006791 _N. J. A. Sloane_