This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006800 M0345 #37 Feb 16 2025 08:32:30 %S A006800 1,1,1,2,2,5,3,10,7,18,7,64,13,51,44,272,35,365,59,1190,235,807,187, %T A006800 15422,461,4221,1425,25792,1181,46236,2191,677116,6759,132543,11144, %U A006800 1962756,14601,814155,48447,13102946,52487,9461929,99879,39133822,399365,34333611,364723 %N A006800 Number of connected vertex-transitive graphs with n nodes. %D A006800 B. D. McKay, personal communication. %D A006800 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006800 B. D. McKay and G. F. Royle, <a href="/A006799/a006799.pdf">The transitive graphs with at most 26 vertices</a>, Ars Combin. 30 (1990), 161-176. (Annotated scanned copy) %H A006800 B. D. McKay and G. F. Royle, <a href="https://www.semanticscholar.org/paper/The-Transitive-Graphs-with-at-Most-26-Vertices-McKay-Royle/aa113eed730330503b43b3fca2b29fb7d46dfd8f">The transitive graphs with at most 26 vertices</a>, Ars Combin. 30 (1990), 161-176. %H A006800 G. Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/trans/index.html">Transitive graphs</a> %H A006800 Steven Skiena, <a href="http://www.cs.sunysb.edu/~skiena/combinatorica/graphs/">A Database of Graphs in Combinatorica Format</a>. %H A006800 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Vertex-TransitiveGraph.html">Vertex-Transitive Graph</a> %F A006800 Moebius transform of A006799. - _Andrew Howroyd_, Sep 18 2018 %t A006800 A006799 = Cases[Import["https://oeis.org/A006799/b006799.txt", "Table"], {_, _}][[All, 2]]; %t A006800 Table[Sum[MoebiusMu[n/d] A006799[[d]], {d, Divisors[n]}], {n, 1, Length[A006799]}] (* _Jean-François Alcover_, Aug 20 2019 *) %Y A006800 Row sums of A319368. %Y A006800 Cf A006799. %K A006800 nonn,nice %O A006800 1,4 %A A006800 _N. J. A. Sloane_ %E A006800 More terms from _Vladeta Jovovic_, Jun 30 2007 %E A006800 a(32)-a(47) from _Andrew Howroyd_, Nov 27 2018