This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006814 M4145 #21 Oct 18 2017 02:42:46 %S A006814 1,6,21,76,249,814,2521,7824,23473,70590,207345,610356,1765959,511006, %T A006814 14643993,41958852,118976633,337823486,951157365,2681163492, %U A006814 7505218171,21030311474 %N A006814 Related to self-avoiding walks on square lattice. %C A006814 After constructing a self-avoiding walk, bridge together all adjacent neighboring sites on the walk. Then imagine a current flowing through the resulting structure. This sequence is the sum of the number of links carrying the full current across all walks of length n. - _Sean A. Irvine_, Aug 08 2017 %D A006814 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006814 A. J. Guttmann and J. Wang, <a href="/A006814/a006814.pdf">The extension of self-avoiding random walk series in 2 dimensions</a>, Preprint. (Annotated scanned copy) %H A006814 S. S. Manna, A. J. Guttmann and A. K. Roy, <a href="https://doi.org/10.1088/0305-4470/22/17/026">Diffusion on self-avoiding walk networks</a>, J. Phys. A 22 (1989), 3621-3627. %Y A006814 Cf. A006815, A006816. %K A006814 nonn,walk %O A006814 1,2 %A A006814 _N. J. A. Sloane_ %E A006814 a(19)-a(22) from _Sean A. Irvine_, Aug 08 2017