This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006816 M4187 #27 Dec 30 2018 03:43:13 %S A006816 1,6,29,108,393,1298,4271,13312,41469,125042,376747,1111144,3274475, %T A006816 9505054,27573041,79086964,226727667,644301026,1830188555,5162408200, %U A006816 14556754485,40811281170 %N A006816 Related to self-avoiding walks on square lattice. %C A006816 After constructing a self-avoiding walk, bridge together all adjacent neighboring sites on the walk. This sequence is sum of the total number of links after adding bridges across all walks of length n. - _Sean A. Irvine_, Aug 09 2017 %D A006816 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006816 A. J. Guttmann and J. Wang, <a href="/A006814/a006814.pdf">The extension of self-avoiding random walk series in 2 dimensions</a>, Preprint. (Annotated scanned copy) %H A006816 B. D. Hughes, Random Walks and Random Environments, vol. 1, Oxford 1995, <a href="/A001334/a001334.pdf">Tables and references for self-avoiding walks counts</a> [Annotated scanned copy of several pages of a preprint or a draft of chapter 7 "The self-avoiding walk"] %H A006816 S. S. Manna, A. J. Guttmann and A. K. Roy, <a href="https://doi.org/10.1088/0305-4470/22/17/026">Diffusion on self-avoiding walk networks</a>, J. Phys. A 22 (1989), 3621-3627. %Y A006816 Cf. A001411, A006814, A006815. %K A006816 nonn,walk %O A006816 1,2 %A A006816 _N. J. A. Sloane_ %E A006816 a(19)-a(22) from _Sean A. Irvine_, Aug 09 2017