This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006827 M1351 #52 Apr 20 2024 00:00:04 %S A006827 1,2,5,8,17,24,46,64,107,147,242,302,488,629,922,1172,1745,2108,3104, %T A006827 3737,5232,6419,8988,10390,14552,17292,23160,27206,36975,41945,57058, %U A006827 65291,85895,99384,130443,145283,193554,218947,281860,316326,413322,454229,594048 %N A006827 Number of partitions of 2n with all subsums different from n. %C A006827 Partitions of this type are also called non-biquanimous partitions. - _Gus Wiseman_, Apr 19 2024 %D A006827 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006827 Fausto A. C. Cariboni, <a href="/A006827/b006827.txt">Table of n, a(n) for n = 1..140</a> (terms 1..89 from Alois P. Heinz) %H A006827 P. Erdős, J. L. Nicolas and A. Sárközy, <a href="http://dx.doi.org/10.1016/0012-365X(89)90086-1">On the number of partitions of n without a given subsum (I)</a>, Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas. %F A006827 a(n) = A000041(2*n) - A002219(n). %F A006827 a(n) = A046663(2*n,n). %e A006827 From _Gus Wiseman_, Apr 19 2024: (Start) %e A006827 The a(1) = 1 through a(5) = 17 partitions (A = 10): %e A006827 (2) (4) (6) (8) (A) %e A006827 (31) (42) (53) (64) %e A006827 (51) (62) (73) %e A006827 (222) (71) (82) %e A006827 (411) (332) (91) %e A006827 (521) (433) %e A006827 (611) (442) %e A006827 (5111) (622) %e A006827 (631) %e A006827 (721) %e A006827 (811) %e A006827 (3331) %e A006827 (4222) %e A006827 (6211) %e A006827 (7111) %e A006827 (22222) %e A006827 (61111) %e A006827 (End) %p A006827 b:= proc(n, i, s) option remember; %p A006827 `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+ %p A006827 `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i, %p A006827 map(x-> [x, x-i][], s))), 0)))) %p A006827 end: %p A006827 a:= n-> b(2*n, 2*n, {n}): %p A006827 seq(a(n), n=1..25); # _Alois P. Heinz_, Jul 10 2012 %t A006827 b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* _Jean-François Alcover_, Nov 12 2013, after _Alois P. Heinz_ *) %o A006827 (Python) %o A006827 from itertools import combinations_with_replacement %o A006827 from collections import Counter %o A006827 from sympy import npartitions %o A006827 from sympy.utilities.iterables import partitions %o A006827 def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # _Chai Wah Wu_, Sep 20 2023 %Y A006827 The complement is counted by A002219, ranks A357976. %Y A006827 Central diagonal of A046663. %Y A006827 The strict case is A321142, even bisection of A371794 (odd A078408). %Y A006827 This is the "bi-" version of A321451, ranks A321453. %Y A006827 Column k = 0 of A367094. %Y A006827 These partitions have Heinz numbers A371731. %Y A006827 Even bisection of A371795 (odd A058695). %Y A006827 A371783 counts k-quanimous partitions. %Y A006827 Cf. A035470, A064914, A237258, A305551, A321452, A365543, A365663, A366320, A371736, A371782, A371792. %K A006827 nonn,nice %O A006827 1,2 %A A006827 _N. J. A. Sloane_ %E A006827 More terms from _Don Reble_, Nov 03 2001 %E A006827 More terms from _Alois P. Heinz_, Jul 10 2012