cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006827 Number of partitions of 2n with all subsums different from n.

This page as a plain text file.
%I A006827 M1351 #52 Apr 20 2024 00:00:04
%S A006827 1,2,5,8,17,24,46,64,107,147,242,302,488,629,922,1172,1745,2108,3104,
%T A006827 3737,5232,6419,8988,10390,14552,17292,23160,27206,36975,41945,57058,
%U A006827 65291,85895,99384,130443,145283,193554,218947,281860,316326,413322,454229,594048
%N A006827 Number of partitions of 2n with all subsums different from n.
%C A006827 Partitions of this type are also called non-biquanimous partitions. - _Gus Wiseman_, Apr 19 2024
%D A006827 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006827 Fausto A. C. Cariboni, <a href="/A006827/b006827.txt">Table of n, a(n) for n = 1..140</a> (terms 1..89 from Alois P. Heinz)
%H A006827 P. Erdős, J. L. Nicolas and A. Sárközy, <a href="http://dx.doi.org/10.1016/0012-365X(89)90086-1">On the number of partitions of n without a given subsum (I)</a>, Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
%F A006827 a(n) = A000041(2*n) - A002219(n).
%F A006827 a(n) = A046663(2*n,n).
%e A006827 From _Gus Wiseman_, Apr 19 2024: (Start)
%e A006827 The a(1) = 1 through a(5) = 17 partitions (A = 10):
%e A006827   (2)  (4)   (6)    (8)     (A)
%e A006827        (31)  (42)   (53)    (64)
%e A006827              (51)   (62)    (73)
%e A006827              (222)  (71)    (82)
%e A006827              (411)  (332)   (91)
%e A006827                     (521)   (433)
%e A006827                     (611)   (442)
%e A006827                     (5111)  (622)
%e A006827                             (631)
%e A006827                             (721)
%e A006827                             (811)
%e A006827                             (3331)
%e A006827                             (4222)
%e A006827                             (6211)
%e A006827                             (7111)
%e A006827                             (22222)
%e A006827                             (61111)
%e A006827 (End)
%p A006827 b:= proc(n, i, s) option remember;
%p A006827       `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+
%p A006827       `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i,
%p A006827                  map(x-> [x, x-i][], s))), 0))))
%p A006827     end:
%p A006827 a:= n-> b(2*n, 2*n, {n}):
%p A006827 seq(a(n), n=1..25);  # _Alois P. Heinz_, Jul 10 2012
%t A006827 b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* _Jean-François Alcover_, Nov 12 2013, after _Alois P. Heinz_ *)
%o A006827 (Python)
%o A006827 from itertools import combinations_with_replacement
%o A006827 from collections import Counter
%o A006827 from sympy import npartitions
%o A006827 from sympy.utilities.iterables import partitions
%o A006827 def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # _Chai Wah Wu_, Sep 20 2023
%Y A006827 The complement is counted by A002219, ranks A357976.
%Y A006827 Central diagonal of A046663.
%Y A006827 The strict case is A321142, even bisection of A371794 (odd A078408).
%Y A006827 This is the "bi-" version of A321451, ranks A321453.
%Y A006827 Column k = 0 of A367094.
%Y A006827 These partitions have Heinz numbers A371731.
%Y A006827 Even bisection of A371795 (odd A058695).
%Y A006827 A371783 counts k-quanimous partitions.
%Y A006827 Cf. A035470, A064914, A237258, A305551, A321452, A365543, A365663, A366320, A371736, A371782, A371792.
%K A006827 nonn,nice
%O A006827 1,2
%A A006827 _N. J. A. Sloane_
%E A006827 More terms from _Don Reble_, Nov 03 2001
%E A006827 More terms from _Alois P. Heinz_, Jul 10 2012