This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006832 M5296 #28 Apr 18 2025 09:53:33 %S A006832 49,81,148,169,229,257,316,321,361,404,469,473,564,568,621,697,733, %T A006832 756,761,785,788,837,892,940,961,985,993,1016,1076,1101,1129,1229, %U A006832 1257,1300,1304,1345,1369,1373,1384,1396,1425,1436,1489,1492,1509,1524 %N A006832 Discriminants of totally real cubic fields. %D A006832 Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 436. %D A006832 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006832 Robin Visser, <a href="/A006832/b006832.txt">Table of n, a(n) for n = 1..10000</a> (terms n = 1..130 from R. J. Mathar). %H A006832 K. Belabas, <a href="https://doi.org/10.1090/S0025-5718-97-00846-6">A fast algorithm to compute cubic fields</a>, Math. Comp. 66 (1997), no. 219, 1213-1237. %H A006832 T. W. Cusick and L. Schoenfeld, <a href="http://dx.doi.org/10.1090/S0025-5718-1987-0866105-8">A table of fundamental pairs of units in totally real cubic fields</a>, Math. Comp. 48 (1987), 147-158. %H A006832 V. Ennola and R. Turunen, <a href="https://doi.org/10.2307/2007969">On totally real cubic fields</a>, Math. Comp. 44 (1985), no. 170, 495-518. %H A006832 P. Llorente and J. Quer, <a href="https://doi.org/10.2307/2008626">On totally real cubic fields with discriminant D < 10^7</a>, Math. Comp. 50 (1988), no. 182, 581-594. %e A006832 The field Q[x]/(x^3 - x^2 - 2*x + 1) is the totally real cubic field with the smallest discriminant of 49. - _Robin Visser_, Apr 17 2025 %Y A006832 Cf. A023679, A278790. %K A006832 nonn %O A006832 1,1 %A A006832 _N. J. A. Sloane_