This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006839 M0164 #35 Nov 01 2023 18:30:44 %S A006839 1,1,1,2,1,4,2,1,3,2,2,2,1,3,2,3,2,2,2,4,1,3,3,2,2,2,2,4,2,2,2,3,3,1, %T A006839 3,3,2,4,3,2,2,4,2,2,2,2,2,3,2,2,3,3,3,5,1,2,3,2,3,3,2,3,2,2,2,3,2,2, %U A006839 2,2,2,3,2,2,2,2,3,3,2,2,2,3,3,3,3,3,3,3,1,3,2,3,2,3,3,4,2,2,2,2,2,3,3,2,2,2,3,2 %N A006839 Minimum of largest partial quotient of continued fraction for k/n, (k,n) = 1. %C A006839 Consider the continued fraction [0,c_1,c_2,...,c_m] of k/n, with k<n, c_m=1, and gcd(k,n)=1. Let f(k,n) be the maximum of the c_i. Then a(n) is the minimum value of f(k,n). This differs from A141822 only in the requirement that c_m=1. - _Sean A. Irvine_, Aug 12 2017 %D A006839 Jeffrey Shallit, personal communication. %D A006839 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006839 Robin Visser, <a href="/A006839/b006839.txt">Table of n, a(n) for n = 1..10000</a> %H A006839 H. Niederreiter, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002485222">Dyadic fractions with small partial quotients</a>, Monat. f. Math., 101 (1986), 309-315. %Y A006839 Cf. A141822. %K A006839 nonn %O A006839 1,4 %A A006839 _N. J. A. Sloane_ %E A006839 More terms from _David W. Wilson_