This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006856 M0624 #60 Jan 06 2023 10:55:03 %S A006856 0,1,2,3,5,6,8,10,12,15,16,18,21,23,26,28,31,34,38,41,44,47,50,54,57, %T A006856 61,65,68,72,76,80,85,87,90,95,99,104,109,114,120,124,129,134,139,145, %U A006856 150,156,162,168,175,176,178,181 %N A006856 Maximal number of edges in n-node graph of girth at least 5. %C A006856 From _Brendan McKay_, Mar 09 2022: (Start) %C A006856 The unique graph for a(50)=175 is the Hoffman-Singleton graph. %C A006856 a(53) is at least 181. (End) %C A006856 a(53) is exactly 181. a(54)-a(56) are at least 185,189,193. - _Brendan McKay_, Jan 07 2023 %D A006856 Brendan McKay, personal communication. %D A006856 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006856 J. Backelin, <a href="http://arxiv.org/abs/1511.08128">Sizes of the extremal girth 5 graphs of orders from 40 to 49</a>, arXiv preprint arXiv:1511.08128 [math.CO], 2015. %H A006856 Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey, <a href="http://www.cs.bgu.ac.il/~mcodish/Papers/Pages/ijcai2013.html">Breaking Symmetries in Graph Representation</a>, IJCAI 2013. %H A006856 David K. Garnick, Y. H. Harris Kwong and Felix Lazebnik, <a href="http://www.math.udel.edu/~lazebnik/papers/ex34a_v2.pdf">Extremal Graphs without Three-Cycles or Four-Cycles</a>, Journal of Graph Theory, 17 (1993), 633-645. %H A006856 Brendan McKay, <a href="https://users.cecs.anu.edu.au/~bdm/data/extremal.html">Extremal Graphs and Turan Numbers</a>. %H A006856 Alice Miller and Michael Codish, <a href="https://arxiv.org/abs/1708.06576">Graphs with girth at least 5 with orders between 20 and 32</a>, arXiv:1708.06576 [math.CO], 2017. %Y A006856 Cf. A159847. %K A006856 nonn,more %O A006856 1,3 %A A006856 _N. J. A. Sloane_ %E A006856 Two more terms from David Garnick (dgarnick(AT)gmail.com), Jan 09 2007 %E A006856 Two more terms from _Michael Codish_, Apr 07 2013 %E A006856 Definition clarified by _Jörgen Backelin_, Jun 18 2015 %E A006856 a(33)-a(52) from _Brendan McKay_, Mar 09 2022 %E A006856 a(53) from _Brendan McKay_, Jan 06 2023