cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006865 Number of Hamiltonian cycles in P_5 X P_{2n}: a(n) = 11*a(n-1) + 2*a(n-3).

This page as a plain text file.
%I A006865 M4946 #26 Feb 07 2024 09:37:08
%S A006865 1,14,154,1696,18684,205832,2267544,24980352,275195536,3031685984,
%T A006865 33398506528,367933962880,4053336963648,44653503613184,
%U A006865 491924407670784,5419275158305920,59701333748591488,657698520049847936,7245522270864939136,79820147647011513472
%N A006865 Number of Hamiltonian cycles in P_5 X P_{2n}: a(n) = 11*a(n-1) + 2*a(n-3).
%D A006865 F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
%D A006865 Y. H. H. Kwong, Enumeration of Hamiltonian cycles in P_4 X P_n and P_5 X P_n. Ars Combin. 33 (1992), 87-96.
%D A006865 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006865 Harvey P. Dale, <a href="/A006865/b006865.txt">Table of n, a(n) for n = 1..960</a>
%H A006865 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
%H A006865 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>
%H A006865 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a>
%H A006865 Y. H. H. Kwong, <a href="https://doi.org/10.1006/eujc.1994.1031">A Matrix Method for Counting Hamiltonian Cycles on Grid Graphs</a>, European J. of Combinatorics 15 (1994), 277-283.
%H A006865 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,0,2).
%F A006865 G.f.: x*(1+3*x)/(1-11*x-2*x^3). - _Colin Barker_, Aug 29 2012
%t A006865 LinearRecurrence[{11,0,2},{1,14,154},20] (* _Harvey P. Dale_, Aug 21 2013 *)
%K A006865 nonn,easy
%O A006865 1,2
%A A006865 _N. J. A. Sloane_, kwong(AT)cs.fredonia.edu (Harris Kwong), _Frans J. Faase_
%E A006865 More terms from _Harvey P. Dale_, Aug 21 2013