This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006897 M1153 #52 Sep 29 2024 11:56:02 %S A006897 1,2,4,8,19,53,209,1253,13599,288267,12293435,1031291299,166122463891, %T A006897 50668153831843,29104823811067331,31455590793615376099, %U A006897 64032471295321173271027,245999896624828253856990803,1787823725042236528801735181651,24639597076850046760911809226614419 %N A006897 a(n) is the number of hierarchical linear models on n unlabeled factors allowing 2-way interactions (but no higher order interactions); or the number of unlabeled simple graphs with <= n nodes. %C A006897 a(n) is the number of isolated points over all simple unlabeled graphs with (n+1) nodes. - _Geoffrey Critzer_, Apr 14 2012 %D A006897 R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. %D A006897 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006897 Alois P. Heinz, <a href="/A006897/b006897.txt">Table of n, a(n) for n = 0..87</a> %H A006897 Max A. Alekseyev and Allan Bickle, <a href="https://allanbickle.wordpress.com/wp-content/uploads/2016/05/forbidsubfinal.pdf">Forbidden Subgraphs of Single Graphs</a>, (2024). See p. 13. %F A006897 O.g.f.: A(x)/(1-x), where A(x) is o.g.f. for A000088. - _Geoffrey Critzer_, Apr 12 2012 %F A006897 a(n) = Sum_{k=0..n} A000088(k). - _Petros Hadjicostas_, Apr 19 2020 %e A006897 a(2) = 4 includes the null graph G1 = [], G2 = [o], G3 = [o o], and G4 = [o-o]. %e A006897 a(3) = 8 includes the null graph G1 = [], G2 = [o], G3 = [o o], G4 = [o-o], G5 = [o o o], G6 = [o-o o], G7 = [o-o-o], and G8 = [triangle with three unlabeled nodes]. - _Petros Hadjicostas_, Apr 10 2020 %p A006897 b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2) %p A006897 +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])), %p A006897 add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)) %p A006897 end: %p A006897 a:= proc(n) option remember; b(n$2, [])+`if`(n>0, a(n-1), 0) end: %p A006897 seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 14 2019 %t A006897 nn = 15; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[g/(1 - x), {x, 0, nn}], x] (* _Geoffrey Critzer_, Apr 12 2012 *) %Y A006897 Partial sums of A000088. %Y A006897 Cf. A006896 (labeled case). %K A006897 easy,nonn,nice %O A006897 0,2 %A A006897 _Colin Mallows_ %E A006897 Name edited by _Petros Hadjicostas_, Apr 08 2020