cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006906 a(n) is the sum of products of terms in all partitions of n.

This page as a plain text file.
%I A006906 M2575 #76 Nov 25 2020 05:07:05
%S A006906 1,1,3,6,14,25,56,97,198,354,672,1170,2207,3762,6786,11675,20524,
%T A006906 34636,60258,100580,171894,285820,480497,791316,1321346,2156830,
%U A006906 3557353,5783660,9452658,15250216,24771526,39713788,64011924,102199026,163583054,259745051
%N A006906 a(n) is the sum of products of terms in all partitions of n.
%C A006906 a(0) = 1 since the only partition of 0 is the empty partition. The product of its terms is the empty product, namely 1.
%C A006906 Same parity as A000009. - _Jon Perry_, Feb 12 2004
%D A006906 G. Labelle, personal communication.
%D A006906 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006906 Alois P. Heinz, <a href="/A006906/b006906.txt">Table of n, a(n) for n = 0..6000</a> (first 1001 terms from T. D. Noe)
%H A006906 Atreya Chatterjee, <a href="https://arxiv.org/abs/2006.01170">Emergent gravity from patterns in natural numbers</a>, arXiv:2006.01170 [gr-qc], 2020.
%H A006906 Dean Hickerson, <a href="/A006906/a006906.txt">Comments on A006906</a>
%H A006906 Robert Schneider and Andrew V. Sills, <a href="http://math.colgate.edu/~integers/uproc13/uproc13.Abstract.html">The product of parts or 'norm' of a partition</a>, #A13 INTEGERS 20A (2020), Theorem 7, p. 4.
%F A006906 The limit of a(n+3)/a(n) is 3. However, the limit of a(n+1)/a(n) does not exist. In fact, the sequence {a(n+1)/a(n)} has three limit points, which are about 1.4422447, 1.4422491 and 1.4422549. (See the Links entry.) - _Dean Hickerson_, Aug 19 2007
%F A006906 a(n) ~ c(n mod 3) 3^(n/3), where c(0)=97923.26765718877..., c(1)=97922.93936857030... and c(2)=97922.90546334208... - _Dean Hickerson_, Aug 19 2007
%F A006906 G.f.: 1 / Product_{k>=1} (1-k*x^k).
%F A006906 G.f.: 1 + Sum_{n>=1} n*x^n / Product_{k=1..n} (1-k*x^k) = 1 + Sum_{n>=1} n*x^n / Product_{k>=n} (1-k*x^k). - _Joerg Arndt_, Mar 23 2011
%F A006906 a(n) = (1/n)*Sum_{k=1..n} A078308(k)*a(n-k). - _Vladeta Jovovic_, Nov 22 2002
%F A006906 O.g.f.: exp( Sum_{n>=1} Sum_{k>=1} k^n * x^(n*k) / n ). - _Paul D. Hanna_, Sep 18 2017
%F A006906 O.g.f.: exp( Sum_{n>=1} Sum_{k=1..n} A008292(n,k)*x^(n*k)/(n*(1-x^n)^(n+1)) ), where A008292 is the Eulerian numbers. - _Paul D. Hanna_, Sep 18 2017
%e A006906 Partitions of 0 are {()} whose products are {1} whose sum is 1.
%e A006906 Partitions of 1 are {(1)} whose products are {1} whose sum is 1.
%e A006906 Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3.
%e A006906 Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6.
%e A006906 Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14.
%p A006906 A006906 := proc(n)
%p A006906     option remember;
%p A006906     if n = 0 then
%p A006906         1;
%p A006906     else
%p A006906         add( A078308(k)*procname(n-k),k=1..n)/n ;
%p A006906     end if;
%p A006906 end proc: # _R. J. Mathar_, Dec 14 2011
%p A006906 # second Maple program:
%p A006906 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A006906        b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
%p A006906     end:
%p A006906 a:= n-> b(n, n):
%p A006906 seq(a(n), n=0..40);  # _Alois P. Heinz_, Feb 25 2013
%t A006906 (* a[n,k]=sum of products of partitions of n into parts <= k *) a[0,0]=1; a[n_,0]:=0; a[n_,k_]:=If[k>n, a[n,n], a[n,k] = a[n,k-1] + k a[n-k,k] ]; a[n_]:=a[n,n] (* _Dean Hickerson_, Aug 19 2007 *)
%t A006906 Table[Total[Times@@@IntegerPartitions[n]],{n,0,35}] (* _Harvey P. Dale_, Jan 14 2013 *)
%t A006906 nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 15 2015 *)
%t A006906 nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 15 2015 *)
%o A006906 (Haskell)
%o A006906 a006906 n = p 1 n 1 where
%o A006906    p _ 0 s = s
%o A006906    p k m s | m<k = 0 | otherwise = p k (m-k) (k*s) + p (k+1) m s
%o A006906 -- _Reinhard Zumkeller_, Dec 07 2011
%Y A006906 Row sums of A118851.
%Y A006906 Cf. A000041, A007870, A022629, A022661, A022693, A077335, A163318, A265758, A302830, A318127, A322364, A322365.
%K A006906 nonn,nice,easy
%O A006906 0,3
%A A006906 _Simon Plouffe_
%E A006906 More terms from _Vladeta Jovovic_, Oct 04 2001
%E A006906 Edited by _N. J. A. Sloane_, May 19 2007