cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006921 Diagonals of Pascal's triangle mod 2 interpreted as binary numbers.

This page as a plain text file.
%I A006921 M2252 #40 Jan 05 2025 19:51:34
%S A006921 1,1,3,2,7,5,13,8,29,21,55,34,115,81,209,128,465,337,883,546,1847,
%T A006921 1301,3357,2056,7437,5381,14087,8706,29443,20737,53505,32768,119041,
%U A006921 86273,226051,139778,472839,333061,859405,526344,1903901,1377557,3606327
%N A006921 Diagonals of Pascal's triangle mod 2 interpreted as binary numbers.
%D A006921 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006921 N. J. A. Sloane, <a href="/A006921/b006921.txt">Table of n, a(n) for n = 0..1000</a>
%H A006921 B. R. Hodgson, <a href="/A006921/a006921.pdf">Letter to N. J. A. Sloane, Oct. 1991</a>
%H A006921 B. R. Hodgson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/30-1/hodgson.pdf">On some number sequences related to the parity of binomial coefficients</a>, Fib. Quart., 30 (1992), 35-47.
%F A006921 a(2*n) = A260022(n); a(2*n+1) = A168081(n+1). - _Reinhard Zumkeller_, Jul 14 2015
%F A006921 a(n) = Sum_{r=0..n/2} binomial(n-r,r)_{mod 2} * 2^(floor(n/2)-r). - _N. J. A. Sloane_, Jul 14 2015
%p A006921 b2:=(n,k)->binomial(n,k) mod 2;
%p A006921 H:=n->add(b2(n-r,r)*2^( floor(n/2)-r ), r=0..floor(n/2));
%p A006921 [seq(H(n),n=0..30)]; # _N. J. A. Sloane_, Jul 14 2015
%o A006921 (Haskell)
%o A006921 a006921 = sum . zipWith (*)
%o A006921                 a000079_list . map (flip mod 2) . reverse . a011973_row
%o A006921 -- _Reinhard Zumkeller_, Jul 14 2015
%o A006921 (Python)
%o A006921 def A006921(n): return sum(int(not r & ~(n-r))*2**(n//2-r) for r in range(n//2+1)) # _Chai Wah Wu_, Jun 20 2022
%Y A006921 Cf. A011973, A000079, A047999 (SierpiƄski), A007318, A101624.
%Y A006921 Cf. A168081, A260022.
%Y A006921 Cf. A257971 (first differences).
%K A006921 nonn,easy
%O A006921 0,3
%A A006921 _N. J. A. Sloane_