cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006923 Number of connected trivalent graphs with 2n nodes and with girth exactly 3.

This page as a plain text file.
%I A006923 M2944 #28 Sep 28 2023 02:05:22
%S A006923 0,0,1,1,3,13,63,399,3268,33496,412943,5883727,94159721,1661723296,
%T A006923 31954666517,663988090257,14814445040728
%N A006923 Number of connected trivalent graphs with 2n nodes and with girth exactly 3.
%D A006923 CRC Handbook of Combinatorial Designs, 1996, p. 647.
%D A006923 Gordon Royle, personal communication.
%D A006923 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006923 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
%H A006923 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_eq_g_index">Index of sequences counting connected k-regular simple graphs with girth exactly g</a>.
%F A006923 a(n) = A002851(n) - A014371(n).
%Y A006923 Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); specified g: this sequence (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
%Y A006923 Connected 3-regular simple graphs with girth at least g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
%K A006923 nonn,hard,more
%O A006923 0,5
%A A006923 _N. J. A. Sloane_
%E A006923 Definition corrected to include "connected", and "girth at least 3" minus "girth at least 4" formula provided by _Jason Kimberley_, Dec 12 2009
%E A006923 Terms a(14), a(15), and a(16) appended using "new" terms of A014371 by _Jason Kimberley_, Nov 16 2011