cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006924 Number of connected trivalent graphs with 2n nodes and girth exactly 4.

This page as a plain text file.
%I A006924 M1526 #36 Jul 08 2025 16:57:49
%S A006924 0,0,0,1,2,5,20,101,743,7350,91763,1344782,22160335,401278984,
%T A006924 7885687604,166870266608,3781101495300
%N A006924 Number of connected trivalent graphs with 2n nodes and girth exactly 4.
%D A006924 CRC Handbook of Combinatorial Designs, 1996, p. 647.
%D A006924 Gordon Royle, personal communication.
%D A006924 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006924 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
%H A006924 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_eq_g_index">Index of sequences counting connected k-regular simple graphs with girth exactly g</a>
%F A006924 a(n) = A014371(n) - A014372(n).
%Y A006924 Connected k-regular simple graphs with girth exactly 4: this sequence (k=3), A184944 (k=4), A184954 (k=5), A184964 (k=6), A184974 (k=7).
%Y A006924 Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); specified g: A006923 (g=3), this sequence (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
%Y A006924 Connected 3-regular simple graphs with girth at least g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
%K A006924 nonn,hard,more
%O A006924 0,5
%A A006924 _N. J. A. Sloane_
%E A006924 Definition corrected to include "connected", and "girth at least 4" minus "girth at least 5" formula provided by _Jason Kimberley_, Dec 12 2009