A006928 a(n) = length of (n+1)st run, with initial terms 1, 2.
1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1
Offset: 1
Examples
Start with [ 1,2 ]. a(1)=1, so the second run has length 1, so a(3) must be 1. a(2)=2, so the third run has length 2, so a(4) must also be 1 and a(5) must be 2. a(3)=1, so the 4th run has length 1, so a(6) must be 1; etc. - _Labos Elemer_
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Eric Weisstein's World of Mathematics, Kolakoski Sequence.
Crossrefs
Essentially the same as Kolakoski sequence A000002.
Programs
-
Mathematica
a = {1, 2}; Do[AppendTo[a, 1+Mod[n, 2]], {n, 2, 80}, {i, a[[n]]}]; a (* Jean-François Alcover, Aug 09 2016, adapted from PARI *)
-
PARI
a=[ 1,2 ]; for(n=2,80, for(i=1,a[ n ],a=concat(a,1+(n%2)))); a
Formula
a(n) = A000002(n+1), n > 1.