This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006952 M1842 #50 Sep 08 2022 08:44:35 %S A006952 1,2,8,24,78,232,720,2152,6528,19578,58944,176808,531128,1593288, %T A006952 4781952,14345792,43043622,129130584,387411144,1162232520,3486755688, %U A006952 10460266224,31380972784,94142915640,282429275616,847287817866,2541865038832,7625595108432 %N A006952 Number of conjugacy classes in GL(n,3). %D A006952 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A006952 W. D. Smith, personal communication. %H A006952 Alois P. Heinz, <a href="/A006952/b006952.txt">Table of n, a(n) for n = 0..700</a> %H A006952 W. Feit and N. J. Fine, <a href="https://projecteuclid.org/euclid.dmj/1077468920">Pairs of commuting matrices over a finite field</a>, Duke Math. Journal, 27 (1960) 91-94. %H A006952 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=162">Encyclopedia of Combinatorial Structures 162</a> %H A006952 I. G. Macdonald, <a href="https://doi.org/10.1017/S0004972700006882">Numbers of conjugacy classes in some finite classical groups</a>, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981). %F A006952 G.f.: Product_{n>=1} (1-x^n)/(1-3*x^n). - _Joerg Arndt_, Jan 02 2013 %F A006952 The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in Product_{k>=1} (1-t^k)/(1-q*t^k). - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001 %F A006952 a(n) ~ 3^n - (1+sqrt(3) + (-1)^n*(1-sqrt(3))) * 3^(n/2) / 4. - _Vaclav Kotesovec_, May 06 2018 %F A006952 G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(3^(k/d) - 1) ) * x^k/k). - _Ilya Gutkovskiy_, Sep 27 2018 %p A006952 with(numtheory): %p A006952 b:= n-> add(phi(d)*3^(n/d), d=divisors(n))/n-1: %p A006952 a:= proc(n) option remember; `if`(n=0, 1, %p A006952 add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) %p A006952 end: %p A006952 seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 03 2012 %t A006952 b[n_] := Sum[EulerPhi[d]*3^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *) %o A006952 (Magma) /* The program does not work for n>12: */ [1] cat [NumberOfClasses(GL(n, 3)) : n in [1..12]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by _Vincenzo Librandi_, Jan 23 2013 %o A006952 (PARI) %o A006952 N=66; x='x+O('x^N); %o A006952 gf=prod(n=1, N, (1-x^n)/(1-3*x^n) ); %o A006952 v=Vec(gf) %o A006952 /* _Joerg Arndt_, Jan 02 2013 */ %Y A006952 Cf. A006951, A049314, A049315, A049316, A304082. %K A006952 nonn %O A006952 0,2 %A A006952 _N. J. A. Sloane_ %E A006952 More terms from _Alois P. Heinz_, Nov 03 2012