This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006962 M2115 #50 Jan 16 2018 02:37:32 %S A006962 2,19,29,199,569,809,1289,1439,2539,3319,3559,3919,5519,9419,9539, %T A006962 9929,11279,11549,13229,14489,17239,18149,18959,19319,22279,24359, %U A006962 27529,28789,32999,33029,36559,42899,45259,46219,49529,51169,52999,55259 %N A006962 Supersingular primes of the elliptic curve X_0 (11). %C A006962 The primes for which A006571(p) == 0 (mod p) are called supersingular for the elliptic curve "11a3" and form sequence A006962. A prime p>2 is in A006962 if and only if A006571(p) = 0. - _Michael Somos_, Dec 25 2010 %D A006962 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006962 Joerg Arndt, <a href="/A006962/b006962.txt">Table of n, a(n) for n = 1..747</a> (first 60 terms from Seiichi Manyama) %H A006962 S. Lang and H. F. Trotter, <a href="http://dx.doi.org/10.1007/BFb0082087">Frobenius Distribution in GL_2-Extensions</a> Lect Notes Math. 504, 1976, see p. 267. %t A006962 maxPi = 500; QP = QPochhammer; s = q*(QP[q]*QP[q^11])^2 + O[q]^(Prime[ maxPi] + 1); Reap[Do[If[Mod[SeriesCoefficient[s, p], p] == 0, Print[p]; Sow[p]], {p, Prime[Range[maxPi]]}]][[2, 1]] (* _Jean-François Alcover_, Nov 29 2015, adapted from PARI *) %o A006962 (PARI) forprime(p=2, 2999, if(polcoeff(x * sqr(eta(x + O(x^p)) * eta(x^11 + O(x^p))), p)%p == 0, print1(p","))) /* _Michael Somos_, Dec 25 2010 */ %o A006962 (PARI) \\ gp -s 30G < A006962.gp %o A006962 { N = 10^8 + 2; %o A006962 default(seriesprecision,N); %o A006962 V = Vec((eta(q) * eta(q^11))^2); %o A006962 forprime(p=2,N, if( V[p]%p == 0, print1(p,", ") ) ); %o A006962 } \\ _Joerg Arndt_, Sep 10 2016 %o A006962 (Ruby) %o A006962 require 'prime' %o A006962 def A006962(n) %o A006962 ary = [] %o A006962 cnt = 1 %o A006962 Prime.each(10 ** 7){|p| %o A006962 a = Array.new(p, 0) %o A006962 (0..p - 1).each{|i| a[(i * i) % p] += 1} %o A006962 s = 0 %o A006962 (0..p - 1).each{|i| %o A006962 s += a[(i * i * i - 4 * i * i + 16) % p] %o A006962 break if s > p %o A006962 } %o A006962 if p == s %o A006962 ary << p %o A006962 cnt += 1 %o A006962 return ary if cnt > n %o A006962 end %o A006962 } %o A006962 end # _Seiichi Manyama_, Sep 10 2016 %Y A006962 Cf. A006571. %K A006962 nonn %O A006962 1,1 %A A006962 _N. J. A. Sloane_ %E A006962 a(29)-a(38) from _Michael Somos_, Dec 25 2010