This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006968 M0417 #72 Aug 20 2025 00:34:08 %S A006968 1,2,3,2,1,2,3,4,2,1,2,3,4,3,2,3,4,5,3,2,3,4,5,4,3,4,5,6,4,3,4,5,6,5, %T A006968 4,5,6,7,5,2,3,4,5,4,3,4,5,6,4,1,2,3,4,3,2,3,4,5,3,2,3,4,5,4,3,4,5,6, %U A006968 4,3,4,5,6,5,4,5,6,7,5,4,5,6,7,6,5,6,7,8,6,2,3,4,5,4,3,4,5,6,4,1,2,3,4,3,2 %N A006968 Number of letters in Roman numeral representation of n. %C A006968 How is this sequence defined for large values? - _Charles R Greathouse IV_, Feb 01 2011 %C A006968 See A078715 for a discussion on the Roman 4M-problem. - _Reinhard Zumkeller_, Apr 14 2013 %C A006968 The sequence can be considered to be defined via the formula (as A055642 o A061493), so the question is to be posed in A061493, not here. - _M. F. Hasler_, Jan 12 2015 %D A006968 GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 60. %D A006968 Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file. (Science Section). %D A006968 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006968 Nathaniel Johnston, <a href="/A006968/b006968.txt">Table of n, a(n) for n = 1..3999</a> %H A006968 Rec.puzzles, <a href="http://www.rec-puzzles.org">Archive</a> %H A006968 Gerard Schildberger, <a href="/A006968/a006968.txt">The first 3999 numbers in Roman numerals</a> %H A006968 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RomanNumerals.html">Roman Numerals</a> %H A006968 Wikipedia, <a href="http://en.wikipedia.org/wiki/Roman_numerals">Roman numerals</a> %H A006968 <a href="/index/Lc#letters">Index entries for sequences related to number of letters in n</a> %F A006968 A006968 = A055642 o A061493, i.e., a(n) = A055642(A061493(n)). - _M. F. Hasler_, Jan 11 2015 %p A006968 A006968 := proc(n) return length(convert(n,roman)): end: seq(A006968(n),n=1..105); # _Nathaniel Johnston_, May 18 2011 %t A006968 a[n_] := StringLength[ IntegerString[ n, "Roman"]]; Table[a[n], {n, 1, 105}] (* _Jean-François Alcover_, Dec 27 2011 *) %o A006968 (R) nchar(paste(as.roman(1 :1024))) # _N. J. A. Sloane_, Aug 23 2009, corrected by _M. F. Hasler_, Aug 18 2025 %o A006968 (Haskell) %o A006968 a006968 = lenRom 3 where %o A006968 lenRom 0 z = z %o A006968 lenRom p z = [0, 1, 2, 3, 2, 1, 2, 3, 4, 2] !! m + lenRom (p - 1) z' %o A006968 where (z',m) = divMod z 10 %o A006968 -- _Reinhard Zumkeller_, Apr 14 2013 %o A006968 (PARI) A006968(n)=#Str(A061493(n)) \\ _M. F. Hasler_, Jan 11 2015 %o A006968 (Python) %o A006968 def f(s, k): %o A006968 return s[:2] if k==4 else (s[1]*(k>=5)+s[0]*(k%5) if k<9 else s[0]+s[2]) %o A006968 def a(n): %o A006968 m, c, x, i = n//1000, (n%1000)//100, (n%100)//10, n%10 %o A006968 return len("M"*m + f("CDM", c) + f("XLC", x) + f("IVX", i)) %o A006968 print([a(n) for n in range(1, 101)]) # _Michael S. Branicky_, Mar 03 2024 %o A006968 (Python) %o A006968 import roman %o A006968 def A006968(n): return len(roman.toRoman(n)) # _M. F. Hasler_, Aug 18 2025 %Y A006968 Cf. A002963, A036746, A036786, A036787, A036788, A061493, A092196, A160676, A160677, A199921. %K A006968 nonn,base,nice,easy %O A006968 1,2 %A A006968 _N. J. A. Sloane_ %E A006968 More terms from _Eric W. Weisstein_