This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007066 M3299 #69 Aug 04 2025 18:51:36 %S A007066 1,4,7,9,12,15,17,20,22,25,28,30,33,36,38,41,43,46,49,51,54,56,59,62, %T A007066 64,67,70,72,75,77,80,83,85,88,91,93,96,98,101,104,106,109,111,114, %U A007066 117,119,122,125,127,130,132,135,138,140,143,145,148,151,153,156,159,161,164,166 %N A007066 a(n) = 1 + ceiling((n-1)*phi^2), phi = (1+sqrt(5))/2. %C A007066 First column of dual Wythoff array, A126714. %C A007066 Positions of 0's in A189479. %C A007066 Skala (2016) asks if this sequence also gives the positions of the 0's in A283310. - _N. J. A. Sloane_, Mar 06 2017 %C A007066 Upper Wythoff sequence plus 2, when shifted by 1. - _Michel Dekking_, Aug 26 2019 %C A007066 In the Fokkink-Joshi paper, this sequence is the Cloitre (0,1,2,3)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n, else a(n) = a(n-1)+3. - _Michael De Vlieger_, Jul 30 2025 %D A007066 Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138. %D A007066 D. R. Morrison, "A Stolarsky array of Wythoff pairs," in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136. %D A007066 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007066 Reinhard Zumkeller, <a href="/A007066/b007066.txt">Table of n, a(n) for n = 1..10000</a> %H A007066 Benoit Cloitre, <a href="https://arxiv.org/abs/2506.18103">A study of a family of self-referential sequences</a>, arXiv:2506.18103 [math.GM], 2025. See p. 9. %H A007066 Robbert Fokkink and Gandhar Joshi, <a href="https://arxiv.org/abs/2507.16956">On Cloitre's hiccup sequences</a>, arXiv:2507.16956 [math.CO], 2025. See pp. 3-4, 7, 10. %H A007066 Clark Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a> %H A007066 Matthew Skala, <a href="https://arxiv.org/abs/1604.04072">Graph Nimors</a>, arXiv preprint arXiv:1604.04072 [math.CO], 2016. %H A007066 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a> %F A007066 a(n) = floor(1+phi*floor(phi*(n-1)+1)), phi=(1+sqrt(5))/2, n >= 2. %F A007066 a(1)=1; for n>1, a(n)=a(n-1)+2 if n is already in the sequence, a(n)=a(n-1)+3 otherwise. - _Benoit Cloitre_, Mar 06 2003 %F A007066 a(n+1) = floor(n*phi^2) + 2, n>=1. - _Michel Dekking_, Aug 26 2019 %p A007066 Digits := 100: t := (1+sqrt(5))/2; A007066 := proc(n) if n <= 1 then 1 else floor(1+t*floor(t*(n-1)+1)); fi; end; %t A007066 t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0, 1}}] &, {0}, 6] (*A189479*) %t A007066 Flatten[Position[t, 0]] (*A007066*) %t A007066 Flatten[Position[t, 1]] (*A099267*) %t A007066 With[{grs=GoldenRatio^2},Table[1+Ceiling[grs(n-1)],{n,70}]] (* _Harvey P. Dale_, Jun 24 2011 *) %o A007066 (Haskell) %o A007066 a007066 n = a007066_list !! (n-1) %o A007066 a007066_list = 1 : f 2 [1] where %o A007066 f x zs@(z:_) = y : f (x + 1) (y : zs) where %o A007066 y = if x `elem` zs then z + 2 else z + 3 %o A007066 -- _Reinhard Zumkeller_, Sep 26 2014, Sep 18 2011 %o A007066 (Python) %o A007066 from math import isqrt %o A007066 def A007066(n): return (n+1+isqrt(5*(n-1)**2)>>1)+n if n > 1 else 1 # _Chai Wah Wu_, Aug 25 2022 %Y A007066 Cf. A064437. %Y A007066 Apart from initial terms, same as A026356 (Cloitre (0,2,2,3)-hiccup sequence). %Y A007066 First column of A126714. %Y A007066 Complement is (essentially) A026355. %Y A007066 Equals 1 + A004957, also n + A004956. %Y A007066 First differences give A076662. %Y A007066 Complement of A099267. [_Gerald Hillier_, Dec 19 2008] %Y A007066 Cf. A193214 (primes). Except for the first term equal to A001950 + 2. %Y A007066 Cf. A026352 (Cloitre (1,1,2,3)-hiccup sequence), A064437 (Cloitre (0,1,3,2)-hiccup sequence). %K A007066 nonn,easy,nice %O A007066 1,2 %A A007066 _N. J. A. Sloane_, _Mira Bernstein_