This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007067 M0622 #64 Feb 14 2024 17:31:24 %S A007067 0,2,3,5,6,8,10,11,13,15,16,18,19,21,23,24,26,28,29,31,32,34,36,37,39, %T A007067 40,42,44,45,47,49,50,52,53,55,57,58,60,61,63,65,66,68,70,71,73,74,76, %U A007067 78,79,81,83,84,86,87,89,91,92,94,95,97,99,100,102,104,105 %N A007067 Nearest integer to n*tau where tau = (1+sqrt(5))/2. %C A007067 First column of inverse Stolarsky array. %C A007067 A rectangle of size a(n) X n approximates a golden rectangle. So does A295282(n) X n, which targets the golden ratio's underlying objective. These approximations differ first for n = 4 and generally if n = F(6*k)/2, where F(n) = A000045(n) is the n-th Fibonacci number and k >= 1. - _Peter Munn_, Jan 12 2018 %D A007067 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007067 Iain Fox, <a href="/A007067/b007067.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from Vincenzo Librandi) %H A007067 Clark Kimberling, <a href="http://dx.doi.org/10.1090/S0002-9939-1993-1111434-0">Interspersions and dispersions</a>, Proceedings of the American Mathematical Society, 117 (1993) 313-321. %H A007067 Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, <a href="https://arxiv.org/abs/2402.08331">Beatty Sequences for a Quadratic Irrational: Decidability and Applications</a>, arXiv:2402.08331 [math.NT], 2024. %H A007067 N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98). %H A007067 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>. %F A007067 Satisfies a(a(n)) = a(n) + n. - _Franklin T. Adams-Watters_, Aug 14 2006 %F A007067 a(n) = floor((A066096(2*n) + 1)/2). - _Peter Munn_, Jan 12 2018 %p A007067 A007067:=n->round(n*(1+sqrt(5))/2); seq(A007067(n), n=0..100); # _Wesley Ivan Hurt_, Nov 27 2013 %t A007067 a[n_] := Round[n*GoldenRatio]; Table[a[n], {n, 0, 55}] (* _Jean-François Alcover_, Jun 27 2012 *) %o A007067 (PARI) a(n) = round(n*(1+sqrt(5))/2) \\ _Michel Marcus_, May 20 2013 %o A007067 (Python) %o A007067 from math import isqrt %o A007067 def A007067(n): return (isqrt(5*n**2<<2)>>1)+n+1>>1 # _Chai Wah Wu_, Aug 26 2022 %Y A007067 Cf. A166946 (characteristic function), A007064 (complement). %Y A007067 Different from A026355. %Y A007067 Sequences with similar terms: A022342, A295282. %Y A007067 Other roundings of n*tau: A000201, A004956, A066096. %Y A007067 Cf. A000045 (Fibonacci numbers), A001622 (value of tau). %K A007067 nonn,easy %O A007067 0,2 %A A007067 _N. J. A. Sloane_, _Mira Bernstein_